

Issue Date: 03/2013 r1.1 eng

Order Code: PA-AC-KNX-64 PA-AC-KNX-128

© Intesis Software S.L. 2013 All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used only in accordance with the terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of Intesis Software S.L.

Intesis Software S.L. Milà i Fontanals, 1 bis 08700 Igualada Spain

TRADEMARKS

All trademarks and trade names used in this document are acknowledged to be the copyright of their respective holders.

Gateway for integration of Panasonic air conditioning systems into KNX TP-1 (EIB) control systems.

Different models are available for this gateway, with the following Order Codes:

PA-AC-KNX-64 Model supporting up to 64 indoor units.

PA-AC-KNX-128 Model supporting up to 128 indoor units.

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL

Index

1. Description	5
1.1 Introduction	5
1.2 Integration signals	5
1.3 Functionality	6
1.4 Capacity of IntesisBox [®]	7
2. KNX interface of IntesisBox [®]	8
2.1 Description	8
2.2 Communication objects available	9
2.2.1 Communication objects per each indoor unit:	9
2.2.2 Communication objects for central controlling (all units at a time) 1	1
3. IntesisBox [®] KNX Device Connections	2
3.1 Connect to Panasonic CZ-CFUNC2 adaptor	2
3.2 Connect to KNX Interface	3
3.3 Connect to PC (LinkBoxEIB) 1	3
3.4 Power Device	3
4. LinkBoxEIB. Configuration & monitoring tool for IntesisBox [®] KNX series	4
4.1 Introduction	4
4.2 Connections configuration	4
4.2.1 Configuration tab	4
4.2.2 Discover function	6
4.2.3 <i>Signals</i>	8
4.3 Sending the configuration to IntesisBox [®]	9
4.4 Signals viewer	9
4.5 Files	20
5. IntesisBox [®] and ETS	20
5.1 Integration of IntesisBox [®] in ETS	20
6. Setup process and troubleshooting	21
6.1 Pre-requisites	21
6.2 <i>Setup</i> procedure	21
6.3 Troubleshooting	22
6.3.1 Physical checking	22
6.3.2 Software checking	22
6.3.3 Power cycle issue	22
6.3.4 256 and 257 Error 2	22
7. Mechanical & Electrical features	23
8. AC Unit Types compatibility	25
9. Error codes	25

1. Description

1.1 Introduction

IntesisBox® KNX - Panasonic AC is a communication gateway for the integration of Panasonic air conditioning (AC) systems into KNX TP-1 (EIB).

This gateway allows integrating a Panasonic AC system in a supervision/control/automation system through PLC, SCADA and, in general, through any device or system with a KNX TP-1 (EIB) interface.

The aim of this integration is to make accessible several Panasonic air conditioning indoor units communicating with the CZ-CFUNC2 communication adaptor¹ as if they were part of a KNX TP-1 (EIB) system.

Therefore, the IntesisBox[®] KNX - Panasonic acts as a KNX device in the KNX TP-1 (EIB) interface, allowing the KNX system read and write in the communication objects.

1.2 Integration signals

Following is the list of parameters that can be monitored/controlled on the indoor units using IntesisBox[®]:

- For **each link** in the system:
 - Link Error Code (read-only)
- For **each indoor unit** in the system:
 - Indoor Unit Exist (read-only)
 - o On/Off (R/W)
 - Operation Mode (R/W)
 - Set Point Temperature from KNX (write-only) 0
 - Set Point Temperature from Indoor Unit (read-only) 0
 - Room Temperature from KNX (write-only) 0
 - Room Temperature from Indoor Unit (read-only) 0
 - Fan Speed (R/W) 0
 - Air Direction control (R/W)
 - Filter Sign Status (read-only)
 - o Filter Sign Reset (W)
 - Error Code (read-only) 0
 - Lock/Unlock remote control (R/W)

Apart from these, the IntesisBox[®] also implements some extra signals (functions):

- For **all indoor units²** in the system: .
 - On/Off (write-only)
 - Operation Mode (write-only)
 - SetPoint Temperature (write-only)
 - Fan Speed (write-only)
 - Lock/Unlock remote control (write-only) 0

¹ CZ-CFUNC2 is an accessory provided by Panasonic and should be acquired separately.

² These signals work as master signals managing all connected units at the same time.

1.3 Functionality

IntesisBox[®] continuously polls (reads) the Panasonic CZ-CFUNC2 communication adaptor for all configured signals and keeps the updated status of all of them in its memory ready to be served when requested from KNX.

When a change of status is detected in a Panasonic's AC signal, a write telegram is sent to the KNX bus, of the associated *KNX Group*.

When it is received a telegram from the KNX bus, and if its *KNX Group address* is associated to a Panasonic's AC signal, a message is sent immediately to the Panasonic CZ-CFUNC2 communication adaptor to perform the corresponding action in the Panasonic's AC system.

In the continuous polling, if no response is detected, from any of the links, an error code will be sent for each link and for each indoor unit associated to this link. There is also a virtual signal for each AC indoor unit indicating existence of the associated address in the link. This signal will be normally activated if the indoor unit is found in the address list of the link.

Each of the mentioned signals in section 1.2 has to be associated to a KNX group address, with this, all the system is seen as *another* KNX device, with the same configuration and functioning characteristics. These addresses are not fixed and can be configured using the LinkBoxEIB tool (see 0).

Figure 1.1 Integration of Panasonic AC into KNX TP-1 (EIB) system

1.4 Capacity of IntesisBox[®]

Element	Max.	Notes
Number of indoor units	128 *	Maximum number of AC indoor units that can be controlled
Main Group Address	4000	Maximum number of communication objects

Table 1.1 IntesisBox[®] capacity

* There are two different models of *IntesisBox[®] KNX – Panasonic AC* each one with different capacity. The table above shows the capacity for the top model (with maximum capacity).

Their order codes are:

- PA-AC-KNX-64:
 - Model supporting up to 64 indoor units
- PA-AC-KNX-128:
 - Model supporting up to 128 indoor units

2. KNX interface of IntesisBox[®]

2.1 Description

IntesisBox[®] KNX- Panasonic supports the KNX TP-1 (EIB) physical layer, as defined in the KNX standard. It behaves as **another** device of the KNX system, with the same configuration and functional characteristics as other KNX devices.

KNX TP-1 (EIB) bus provides a 30V DC current, which can even directly power certain lowconsumption KNX devices. IntesisBox[®] does not drain any significant current from the KNX bus - it has a separate own power supply. Another important electrical aspect is that the KNX TP-1 (EIB) port of IntesisBox[®] is optically isolated (~2500Vrms AC) from all its other ports (EIA232, EIA485, Ethernet) and power supply.

At a logical level, all KNX devices feature an interface of communication objects, by which their functionality is abstracted. As a basic example, a KNX interface of an AC indoor unit would typically consist of an interface of datapoints such as "On/Off", "Setpoint temperature", "Operating mode", etc.

Associations between communication objects from different KNX devices are actually done by means of so-called group addresses.

KNX telegrams within a working KNX installation are always addressed to a certain KNX group address. Typically, whenever a communication object on a KNX device changes its value, the new value is updated to the bus, by sending a "write" telegram addressed to its associated group address. The rest of KNX devices in the installation that have a communication object associated to this group address will act accordingly on reception of the new value.

Other operations are possible. KNX devices can also decide to read the current value of the communication objects, by sending a "read" telegram to a certain group address (previously known to be associated to the targeted comm. object). This operation is performed by many devices on bus start-up or recovery - in this way, the device gets the latest value of the group addresses it has associated right from its start-up.

Each datapoint defined in IntesisBox[®] KNX configuration needs at least a single KNX group address associated with it. This group address will be used either for sending updates to KNX of the datapoint value (that have been generated on the other PANASONIC interface of the IntesisBox[®]), or receiving updates *from* KNX of the datapoint value (that will be propagated to the Panasonic side in this case)

From the point of view of KNX functionality, each datapoint of IntesisBox[®] can hold following group address associations:

- A single KNX group address with which update/write telegrams will be sent, whenever the datapoint changes (as a result of a change coming from the other interface of IntesisBox[®], PANASONIC in this case).
- One or more KNX group addresses from which this datapoint of IntesisBox[®] will be updated/written from the KNX installation (resulting in a change to the other side of IntesisBox[®], PANASONIC in this case).
- A single KNX group address from which IntesisBox[®] will read the object value on KNX bus recovery / IntesisBox[®] start-up

Behavior of IntesisBox[®] datapoints with regard to their associated group addresses is defined by means of flags (R, W, T, U and U2), explained in section 0.

Additional to the binding aspect commented above, it is also important to notice that each KNX communication object has a defined EIS type. The EIS type of a communication object defines the bit length and coding of the data it represents. Communication objects associated by means of a group address need to match the same EIS type, in order to communicate consistently.

So, at configuration time it is required that for each datapoint configured on IntesisBox[®] an EIS type is defined. Datapoints on IntesisBox[®] KNX support the following EIS-types:

- EIS1 Switching (1bit raw)
- EIS5 Value (16bit floating type)
- EIS10 16bit Counter (16bit raw)
- EIS14 8bit Counter (8bit raw)

ETS3 or ETS4 software tools are not used to configure IntesisBox[®]. Though, it's typical that the choice of which KNX group addresses to use is restricted or defined by an ETS-based project. If that's the case, the KNX installer/integrator needs to provide the set of group addresses prior to doing the configuration of datapoints in LinkBoxEIB.

Also, a *dummy* ETS application is provided by Intesis Software (section 5), which can be imported into ETS. This application is nor downloadable into IntesisBox[®] KNX neither usable for IntesisBox[®] configuration. Rather, it poses as a means of having a device in the ETS project representing the IntesisBox® KNX and its own datapoints/communication objects, and to which group addresses are associated.

2.2 Communication objects available

Address map is configurable for each indoor unit and can be modified through the supplied software LinkBoxEIB. Next, there are two tables showing different datapoints/communication objects available either for each indoor unit control or all indoor units control at a time. Please, remember that in the tables **R/W** stands for **Read** and **Write**, **R** stands for **Read Only** and **W** stands for **Write Only**.

Property	EIS type	Signal type (R/W)	Description / Status				
IU_Exist	1 – Switching (1bit)	R	Communication Status 0 – Communication OK, 1 -	- Communication ERROR			
OnOff	1 – Switching (1bit)	R/W	Indoor Unit On/Off 0 – Off, 1 – On				
	14 – Counter (8bit)	R/W	Operation Mode 0 – Cool, 1 – Heat, 2 – Fan	, 3 – Dry, 4 – Auto			
Mode ¹	DPT 20.105 (8bit)	R/W	Operation Mode 0 – Auto, 1 – Heat, 3 – Cool, 9 – Fan, 14 – Dry				
	DPT 1.100 (1bit)	R/W	Operation Mode 0 – Cool, 1 – Heat				
Mode::Cool	1 - Switching (1bit)	R/W	0 – Inactive, 1 – Active	Only one of these objects will			
Mode::Heat	1 - Switching (1bit)	R/W	0 – Inactive, 1 – Active	be set / read to ``1" at the			
Mode::Fan ¹	1 - Switching (1bit)	R/W	0 – Inactive, 1 – Active	same time (all objects will be			
Mode::Dry	1 – Switching (1bit)	R/W	0 – Inactive, 1 – Active	updated on bus upon a Mode			
Mode::Auto	1 – Switching (1bit)	R/W	0 – Inactive, 1 – Active	change)			

2.2.1 Communication objects per each indoor unit:

When Fan mode is selected, no changes on the Set Point will apply.

© Intesis Software S.L. - All rights reserved

This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

			User Set Point Temperature					
			-					
Set Point User ¹	5 - Float (2byte)	VV	From -15°C to 60 °C					
			Refers to the temperature introduced in the KNX control system to set the desired temperature.					
			Indoor Unit Set Point Temperature					
		R	From -15°C to 60 °C					
Set Point Indoor unit	5 – Float (2byte)							
			Refers to the current temperature set in the Indoor Unit as set point temperature.					
			User Ambient Temperature (only integer numbers)					
- - - - - - - - - -			From -35°C to 92°C					
Room Temp User *	5 – Float (2byte)	W						
			Keters to the ambient temperature provided by an external KNX sensor or thermostat.					
			Indoor Unit Ambient Temperature (only integer					
			numbers)					
Room Temp Indoor Unit	5 – Float (2byte)	R	From -35°C to 92°C					
			Unit temperature sensor.					
Fan Speed	14 – Counter (8bit)	R/W	Fan Speed					
FanSpeed::Auto	1 – Switching (1bit)	R/W	0 - Auto, T - Low, 2 - Middle, 3 - High 0 - Inactive, 1 - Active Only one of these objects will be					
FanSpeed::Low	1 – Switching (1bit)	R/W	0 – Inactive, 1 – Active set / read to "1" at the same					
FanSpeed::Middle	1 – Switching (1bit)	R/W	0 - Inactive, 1 - Active time (all objects will be updated					
FanSpeed::High	1 – Switching (1bit)	R/W	0 – Inactive, 1 – Active on bus upon a FanSpeed change)					
			Air Direction Control					
			0 – Ott/Auto 1 – Herizental					
			2 - Pos1					
Louver	14 – Counter (8bit)	R/W	3 - Pos2					
			4 – Pos3					
			5 - Vertical 5 - Swing					
		6	Filter Sign Status					
Filter Sign Status	1 – Switching (1bit)	К	0 – Off, 1 - On					
Filter Sign Reset	1 – Switching (1bit)	W	Filter Sign Reset 1 - Clear Filter Alarm (When reading always 0)					
ErrorCode	10 – Counter (16bit)	R	Error Code 0 – No Error, 1257 – Error Code ²					
			Lock/ Unlock Remote Controller ON/Off function					
RCLockOnOff	1 – Switching (1bit)	R/W	0 – Remote Controller Unlocked 1 – Remote Controller Locked					

¹ When "*SetPoint User"* and "*Room Temp User"* objects are used, the system adjusts the set point temperature according to the values introduced in these registers, ignoring other temperature parameters.

 2 See list of indoor unit error codes and their meaning in section 9.

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

RCLockMode	1 – Switching (1bit)	R/W	Lock/ Unlock Remote Controller Mode function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockSetpoint	1 – Switching (1bit)	R/W	Lock/ Unlock Remote Controller Set Point function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockLouver	1 – Switching (1bit)	R/W	Lock/ Unlock Remote Controller Louver function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockFanSpeed	1 – Switching (1bit)	R/W	Lock/ Unlock Remote Controller Fan Speed function 0 – Remote Controller Unlocked 1 – Remote Controller Locked

2.2.2 Communication objects for central controlling (all units at a time)

Property	EIS type	Signal type (R/W)	Description / Status
Link1_Error Code	1 – Switching (1bit)	R	CZ-CFUNC2 Link1 Error Code 0 – Communication OK 256 – No Communication xxx – Error code
Link2_Error Code	1 – Switching (1bit)	R	CZ-CFUNC2 Link1 Error Code 0 – Communication OK 256 – No Communication xxx – Error code
OnOff_All	1 – Switching (1bit)	W	Indoor Unit On/Off 0 – Off, 1 – On
Mode_All	14 - Counter (8bit) DPT 20.105 (8bit) DPT 1.100 (1bit)	W	Operation Mode 0 – Cool, 1 – Heat
SetPoint_All	5 - Float (2byte)	W	Set Point Temperature (only integer numbers allowed) -15°C to 60 °C
Fan Speed_All	14 – Counter (8bit)	W	Fan Speed 0 - Auto, 1 - Low, 2 - Middle, 3 - High
RCLockOnOff_All	1 – Switching (1bit)	W	Lock/ Unlock Remote Controller ON/Off function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockMode_All	1 – Switching (1bit)	W	Lock/ Unlock Remote Controller Mode function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockSetpoint_All	1 – Switching (1bit)	W	Lock/ Unlock Remote Controller Set Point function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockLouver_All	1 – Switching (1bit)	W	Lock/ Unlock Remote Controller Louver function 0 – Remote Controller Unlocked 1 – Remote Controller Locked
RCLockFanSpeed_All	1 – Switching (1bit)	W	Lock/ Unlock Remote Controller Fan Speed function 0 – Remote Controller Unlocked 1 – Remote Controller Locked

3. IntesisBox[®] KNX Device Connections

Figure 3.1 Integration of Panasonic AC into KNX TP-1 (EIB) system

3.1 Connect to Panasonic CZ-CFUNC2 adaptor

Use the EIA485 connector in the left bottom corner of the IntesisBox[®] device in order to connect the Panasonic adaptor to the IntesisBox[®]. Remember to follow all safety precautions indicated by Panasonic.

To properly communicate with the IntesisBox[®], please check:

- Initial communication setting item (8.SCAn.x) is set to '0' (default value).
- Adaptor number setting item (1.Ano.xx) matches LinkBoxEIB Adaptor address value.
- **Instructions for the Electrical Installer** (CZ-CFUNC2) document for further information.

Modifying some other parameters can affect proper communication.

3.2 Connect to KNX Interface

Connect + and – terminals of the KNX bus to the IntesisBox $^{\ensuremath{\mathbb{R}}}$ KNX connector (C1). The polarity is important.

How to check if there is communication with the KNX bus is explained in the LinkBoxEIB Manual (section 6.3).

To check connectivity and correct functioning, use LinkBoxEIB software (see LinkBoxEIB User Manual).

3.3 Connect to PC (LinkBoxEIB)

This action allows the user to have access to configuration and monitoring of the device (more information can be found in the LinkBoxEIB User Manual). Two methods to connect to the PC can be used:

- Ethernet: Using the ETH port (**Figure 3.1**) of IntesisBox[®]. How to check connectivity is explained in section 6.3.
- Serial cable: Connect the IntesisBox[®] device to the PC serial port using the serial cable provided. One end should be connected to the Console EIA232 port of the IntesisBox[®] device (**Figure 3.1**) and the other end to the PC serial port.

IntesisBox [®] (DB9 F)	EIA232 Serial Console	PC Connection (LinkBoxEIB)		PC (DB9 M)
Cable (DB9 M)		EIA232 (Straight)		Cable (DB9 F)
ΤX	2	·	2	RX
RX	3	←	3	ΤX
GND	5	← →	5	GND

 Table 3.1 EIA232 serial connection pin assign

3.4 Power Device

To power up the device, what you need is to plug properly the Power Supply connector to the IntesisBox[®] device using a proper cable and connecting one end to the power supply connector (see **Figure 3.1**) and the other end to the power line.

4. LinkBoxEIB. Configuration & monitoring tool for IntesisBox[®] KNX series

4.1 Introduction

LinkBoxEIB is a Windows[®] compatible software developed specifically to monitor and configure IntesisBox[®] KNX series.

The installation procedure and main functions are explained in the *LinkBoxEIB User Manual*. This document can be found in the Doc folder, or can be downloaded from the link indicated in the installation sheet supplied with the IntesisBox[®] device.

In this section, only the specific case of Panasonic indoor **unit's** integration to KNX networks will be covered.

4.2 Connections configuration

To configure the IntesisBox[®] connection parameters and to see the points list, press on the **Config** button in the **menu bar** (see Figure 4.1). The **Panasonic Configuration** window will open (see Figure 4.2). For integrations with large number of points, there is available an alternative CSV installation procedure explained in the LinkBoxEIB User Manual.

🗐 LinkBo	EIB V.1.1	L.5					-		_	
<u>File</u> Op	tions <u>W</u>	indows ?								
Projects	Config	Connect	S ^{TA} . COM1	• 7 Status	Send	Receive	Keset	Signals	elicololio oololol oloololol oloolol elicolol elicolol elicolol KNX	Panason

Figure 4.1 LinkBoxEIB menu bar

4.2.1 Configuration tab

Select the **Connection** tab to configure the connection parameters. Three subsets of information are shown in this window: EIB (KNX interface), IntesisBoxIP (IP interface for configuration) and Panasonic interface parameters (see Figure 4.2).

Next, there is an explanation for each of the configuration parameters in each mode.

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

KNX interface configuration parameters:

Figure 4.3 KNX interface configuration

- **1. Physical Address:** Enter the KNX physical address for the gateway.
- 2. Force update after a KNX bus reset: Affects to the KNX groups with the Update feature activated (U).
- **3. Delay for update after bus reset:** Enter the desired delay after a bus reset. It is expressed in seconds.
- IntesisBoxIP interface configuration parameters:

Figure 4.4 IntesisBoxIP interface configuration

- **1. IP:** Enter the IP address for the gateway.
- 2. NetMask: Enter the IntesisBox[®] net mask address.
- 3. Gateway: Enter the router or default gateway address if needed. In case you don't want to use it, left blank.
- Panasonic interface configuration parameters:

Figure 4.5 Panasonic interface configuration

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL

URL

1. Indoor Units: In this list, you can individually enable each of the 128 indoor units available on the system. The index in the column "Indoor Units" (i.e. the number x in "Indoor Unit xxx") is the reference that will be used later on (in tab "Signals") to refer to this AC indoor unit. You can also change the description name of the Indoor Unit and its address to facilitate integration tasks using OU, IU and Name text boxes.

NOTE: Addresses for units connected in Link2 begin at IU-65.

- 2. OU: Enter here the desired Outdoor Unit address (from 1 to 30).
- **3. IU:** Enter here the desired Indoor Unit address (from 1 to 64).
- 4. Name: Enter here the desired descriptive Indoor Unit name (optional).
- 5. Gateway version: Selection of the IntesisBox[®] KNX Panasonic gateway you are setting up (128AC for PA-AC-KNX-128, 64 AC for PA-AC-KNX-64).
- 6. Adaptor Address: Enter the configured address for the CZ-CFUNC2 adaptor (from 1 to 15).
- 7. Link1 Address: Enter the configured address for Link1 in the CZ-CFUNC2 adaptor (from 0 to 31).
- 8. Link2 Address: Enter the configured address for Link2 in the CZ-CFUNC2 adaptor (from 0 to 31).
- 9. Timeout response: Maximum amount of time permitted before activating the Communication Error signal. The signal error is not shown after 3 attemps. Time is expressed in milliseconds (ms) and ranges can vary from 500 ms to 10000 ms.
- 10. Delay interframe: Maximum amount of time permitted between End Of Transmission (EOT) and a new frame. It is expressed in milliseconds (ms) and ranges can vary from 10 ms to 3000 ms.
- 11. + / : Select or unselect all units in the Indoor Units list.
- 12. KNX Datapoint type for HVAC Mode communication object: Select the desired codification so the Mode object matches your integration needs.

Additional configuration parameters should generally be left to their default value. They only might need to be tuned in some very specific cases (installations with large number of units, scenarios with large bursts of commands sent at once ...)

4.2.2 Discover function

IntesisBox[®] offers the possibility to check the current setup of your Panasonic project. By means of a discover function, our gateway will discover all devices connected to the CZ-CFUNC2 communication adaptor.

In order to activate this function, you must use the communication console from LinkBoxEIB. In there, you must introduce the command DISC. Once this is done, our gateway will show all units connected in the Panasonic system and its topology (see Figure 4.6).

IntesisBox[®] KNX – Panasonic AC

IntesisBox Communication Co	onsole		- • •
•	🛛 🛐 🖻 🔽 Active	🔽 AutoScroll	🔲 Log to file
2013/02/14 11:37:36 2013/02/14 11:37:36	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	IUS:6	UNC2:
2013/02/14 11:37:36 2013/02/14 11:37:36	>LK2-003-104 >\		

Figure 4.6 Disc function on LinkBoxEIB console

In case the scan process is not finished, no indoor units will appear in the list and the number of units per link will be '0'. This behavior is associated to a "SCAN in progress..." message in the communication console and an indication of '0' indoor units per link (see Figure 4.7). This situation is produced when asking for a DISC command while Scan *process*, from the communication adaptor CZ-CFUNC2 is still on going.

IntesisBox Communication Console	- • •
V AutoScroll	🗖 Log to file
2013/02/14 11:37:36 <disc 2013/02/14 11:37:36 >/ 2013/02/14 11:37:36 >Config found in CZ- 2013/02/14 11:37:36 >Link1 - Nb IUS:0 2013/02/14 11:37:36 >Link2 - Nb IUS:0 2013/02/14 11:37:36 >SCAN in progress 2013/02/14 11:37:36 >\</disc 	-CFUNC2:

Figure 4.7 Disc function and Scan in progress

When the Scan process is in progress, error 258 is also enabled. Therefore, if you see error 258 active, please wait for the Scan process to finish (2 minutes approximately).

4.2.3 Signals

Select the Signals tab to configure the signals list (the IntesisBox[®] internal points).

1 2	3	4	5	6		7		8
		1	1			L		1
G Configuration Panasonic - Mat.Indoo	r Units 128 - Max.GroupsEIB:4000							EX
						E	_	
Connection (bignais)		•	*			۰.		•
IU Property	Signal	EIS	Group	Listening addresses	R	W	TL	Active 🔺
12 1 00- IU_Exist	IU exist in the adaptor: 0-Not exist, 1-Exist (R)	01 - Switching (1 bit)	8/1/12		R	_	Т	1-Yes
13 1 01 · OnOff	On/Off: 0-Off, 1-On (R/W)	01 - Switching (1 bit)	8/1/13		R	W	Т	1-Yes
14 1 02 · Mode	Mode : 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry (RAW)	14 · DPT 20.105 (8 b	8/1/14		B	W	T	1-Yes
15 1 18 · Cool	Mode: 1- Cool (R/W)	01 - Switching (1 bit)	8/1/15		R	W	T	1-Yes
16 1 17 · Heat	Mode: 1-Heat (R/W)	01 - Switching (1 bit)	8/1/16		R	W	T	1-Yes
17 1 19 · Fan	Mode: 1-Fan (R/W)	01 - Switching (1 bit)	8/1/17		R	W	T	1-Yes
18 1 20 · Dry	Mode: 1- Dry (R/W)	01 - Switching (1 bit)	8/1/18		B	W	T	1-Yes
19 1 21 · Auto	Mode: 1-Auto (R/W)	01 - Switching (1 bit)	8/1/19		R	W	T	1-Yes
20 1 03 · SetPointUser	Setpoint temperature from KNX: Celsius value, -15 to 60 (W)	05 - Float (16 bit)	8/1/20			W		1-Yes
21 1 04 · SetPointIU	Setpoint temperature from IU: Celsius value, -15 to 60 (R)	05 - Float (16 bit)	8/1/21		R		T	1-Yes
22 1 10 - BoomTempLiser	Ambient temperature from KNX: Celsius value -35 to 92 (W)	05 - Eloat (16 bit)	8/1/31			w		0-No

Figure 4.8 Signal list

- 1. IU: Indoor Unit identifier.
- **2.** *Property*: Identifies the different signals available per every PANASONIC group. An identification code is given to every different signal into the PANASONIC group, identifying every signal with an individual code. In section 2.2, an explanation of every signal is given. A contextual menu appears using mouse right button click over the column showing all the possible signal codes.
- 3. Signal: Signal's descriptive name (optional). Useful to identify the signal. The default descriptive name corresponds to the signal's code, but can be edited or modified.
- **4. EIS:** KNX data type (Data point) to encode the signal's value. It will depend on the PANASONIC type of signal associated to it in every case. Edit using the mouse right-button-click pop-up menu available on the column. Only the EIS defined in values are allowed.
- 5. Group: Main KNX group address for the signal. Flags R, W, T, U explained below will only apply for this main KNX group address, not for listening addresses. Formats supported are P/I/S and P/S.
- 6. Listening addresses: KNX group addresses that will be listened by IntesisBox[®] for this signal. If IntesisBox® receives a KNX telegram whose destination is one of these listening addresses, the telegram will be taken into account and the corresponding action will be performed on this signal (if W is active). Formats supported are P/I/S and P/S, comma separated.

7. Communication object flags:

R: Indicates if this signal is allowed to be read from KNX system ("R" flag activated, "blank" flag not activated).

W: Indicates if this signal is allowed to be written from KNX system ("W" flag activated, "blank" flag not activated).

T: Indicates if this signal will generate a telegram sending to the KNX system following a change of the signal's value, that is to say, any change of value of this signal in PANASONIC side will be transmitted to the KNX system if this flag is activated ("T" flag activated, "blank" flag not activated).

U: Indicates if this signal will be updated (sending read requests) whenever IntesisBox[®] starts up or after a KNX bus reset ("U" flag activated for the main group address, "U2" activated for the listening group address, "blank" flag not activated).1

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

URL

¹ DO NOT BE CONFUSED: Philosophy of IntesisBox[®] point's U flag is not the same as KNX device's U flag. In KNX devices, U flag means that the point's value will be updated whenever a write telegram for the group address is received by the device.

8. Active: Indicates if the signal is active or not for the current configuration ("1-Yes" signal active, "0-No" signal not active).

See section 2.2 for further detail on available signals and the possible values on each one.

4.3 Sending the configuration to IntesisBox[®]

When the configuration is finished, follow the next steps.

1.- Click on Save button to save the project to the project folder on your hard disk (more information in LinkBoxEIB User Manual).

- 2.- You will be prompted to generate the configuration file to be sent to the gateway. a.- If Yes is selected, the binary file (PANASONIC.Lbox) containing the configuration for the gateway will be generated and saved also into the project folder.
 - b.- If **NO** is selected, remember that the binary file with the project needs to be generated before the IntesisBox[®] starts to work as expected.

3.- Once in the configuration window again, click on **exit**. Configuration file is ready to be sent to the IntesisBox[®] device.

4.- Press the **Send File** button to send the binary file to the IntesisBox[®] device. The process of file transmission can be monitored in the IntesisBox[®] Communication Console window. IntesisBox[®] will reboot automatically once the new configuration is loaded.

After any configuration change, do not forget to send the configuration file to the IntesisBox[®] using button Send File.

4.4 Signals viewer

Once the gateway is running with the correct configuration, to supervise the status of the configured signals, press the **Signals** button on the **menu** bar (see Figure 4.1). The Signals Viewer window will open (see Figure 4.9).

This window shows all signals active within the gateway with its main configuration parameters and its real time value¹ in the **Value** column.

gnals Viewer								-	
🗎 🛛 Signal's descrip	tion name.								
Dev.	Cod Ident.	Signal	EIS	Group	Listening add	R	W	T	U Value
1	0 80-Link1_ErrorCode	Error code Adaptor Link1: 0-0k, 256-Not	10 - Counter (16 bit si	8/1/1		R		Т	
2	0 81-Link2_ErrorCode	Error code Adaptor Link2: 0-0k, 256-Not	10 - Counter (16 bit si	8/1/2		R		T	
3 L1-01-01 / IU-1	0 00- IU_Exist	IU exist in the adaptor: 0-Not exist, 1-Exis	01 - Switching (1 bit)	8/1/12		R		T	
4 L1-01-01 / IU-1	0 01 · OnOff	On/Off: 0-Off, 1-On (R/W)	01 - Switching (1 bit)	8/1/13		R	W	Т	
5 L1-01-01 / IU-1	0 02 · Mode	Mode : 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-	14 - DPT 20.105 (8 b	8/1/14		R	W	T	
6 L1-01-01 / IU-1	0 18 · Cool	Mode: 1-Cool (R/W)	01 - Switching (1 bit)	8/1/15		R	W	T	
7 L1-01-01 / IU-1	0 17 · Heat	Mode: 1-Heat (R/W)	01 - Switching (1 bit)	8/1/16		R	W	T	
8 L1-01-01 / IU-1	0 19 · Fan	Mode: 1-Fan (RAV)	01 - Switching (1 bit)	8/1/17		R	W	T	
9 L1-01-01 / IU-1	0 20 · Dry	Mode: 1-Dry (RAV)	01 - Switching (1 bit)	8/1/18		R	W	Т	
10 L1-01-01 / IU-1	0 21 · Auto	Mode: 1-Auto (R/W)	01 - Switching (1 bit)	8/1/19		R	W	Т	
11 L1-01-01 / IU-1	0 03 - SetPointUser	Setpoint temperature from KNX: Celsius v	05 - Float (16 bit)	8/1/20			W		
12 L1-01-01 / IU-1	0 04 - SetPointIU	Setpoint temperature from IU: Celsius valu	05 - Float (16 bit)	8/1/21		R		Т	
13 L1-01-01 / IU-1	0 11 · RoomTempIU	Ambient temperature from IU: Celsius valu	05 - Float (16 bit)	8/1/32		R		T	
14 L1-01-01 / IU-1	0 05 - FanSpeed	Fan speed: 0-Auto, 1-Low, 2-Middle, 3-H	14 - Counter (8 bit)	8/1/22		R	W	T	
15 L1-01-01 / IU-1	0 22 · Auto	Fan speed: 1 Auto (R/W)	01 - Switching (1 bit)	8/1/23		R	W	Т	
16 L1-01-01 / IU-1	0 25 · Low	Fan speed: 1. Low (R/W)	01 - Switching (1 bit)	8/1/24		R	W	T	
10 10 00 00 1010	0.04 14 1	E 1.4.0 105.00	er e vir leiro	0.0.00		n	с. z	T	

Figure 4.9 LinkBoxEIB Signals Viewer

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

tel

IntesisBox[®] is a registered trademark of Intesis Software SL

¹ In case you connect to the IntesisBox[®] when it's been running for a certain time, you should press the *Refresh* button to get updated values. After pressing Refresh, all signal values will keep continuously updated until the connection is closed.

The signals viewer can be used even though only one system is connected to the IntesisBox[®], KNX or Panasonic AC. Therefore, it becomes convenient for supervision and testing the system.

In order to force a specific value to a signal, double-click its row in the table. This will display a dialog in which the desired value can be entered (see Figure 4.10). Changing its value in this way, will make:

- The content of the corresponding KNX group address will be changed to this value.
- If the signal is write-enabled, it will trigger a suitable command to Panasonic AC system.

🖭 Communication status		
Data Test.		
	Accept	<u>C</u> ancel
,		

Figure 4.10 Signal value change window

4.5 Files

LinkBoxEIB saves the integration configuration in the following files inside the project folder:

PROJECT.INI	INI file containing general information related to the project.		
PANASONIC.INI	INI file containing information related with the values configured through the "Connection" tab in IntesisBox [®] configuration.		
PANASONIC.LBOX	Binary file created from the information in the files described above. This is the file downloaded to the IntesisBox [®] .		
PANASONIC.dat	ASCII file containing the configuration of the project signals. It is the one to be used for bulk point configuration.		

 Table 4.1 LinkBoxEIB generated files during Project creation

It is strongly recommended to back up the project folder containing these files in external media, once the installation process is finished. This way you will be able to do future configuration changes in case of reinstallation of LinkBoxEIB due, for example, to a failure of the hard disk in the PC where LinkBoxEIB was installed.

The configuration cannot be uploaded from the gateway to LinkBoxEIB, it can only be downloaded.

5. IntesisBox[®] and ETS 5.1 Integration of IntesisBox[®] in ETS

As explained the IntesisBox[®] is configured with the LinkBoxEIB but in some projects it might be needed to integrate the gateway in the ETS project, for example to allow the line couplers have a correct configuration of their filter tables. To do so a Dummy device can be used in ETS to simulate the IntesisBox[®] and associate also to this Dummy device all group addresses used in IntesisBox[®].

The dummy device can be downloaded from: http://www.intesis.com/down/eib/Dummy_Intesis.zip

6. Setup process and troubleshooting

6.1 Pre-requisites

It is necessary to have the KNX bus operative and well connected to the KNX port of $IntesisBox^{\ensuremath{\mathbb{R}}}.$

Connectors, connection cables, PC for LinkBoxEIB, and other auxiliary material, if needed, are not supplied by Intesis Software for this standard integration. Items supplied by Intesis Software for this integration are:

- IntesisBox[®] KNX device with full Panasonic CZ-CFUNC2 compatibility without extra components.
- Power supply to power IntesisBox[®] (European plug type).
- Access to LinkBoxEIB software download site to configure IntesisBox[®].
- Console cable needed to download the configuration to IntesisBox[®].
- Product documentation.

6.2 Setup procedure

- 1. Install LinkBoxEIB on your laptop, use the setup program supplied for this and follow the instructions given by the Installation Wizard.
- 2. Install IntesisBox[®] in the desired installation site. For your convenience, check external enclosure measures (see 7) before deciding where to place the IntesisBox[®] device.
- 3. Connect the communication cable coming from the KNX bus to the IntesisBox[®] KNX port (See 0 for more information on connection procedure).
- 4. Connect to the Panasonic CZ-CFUNC2 communication adaptor through the EIA485 cable to the IntesisBox[®] port marked as CZ-CFUNC2 (see 3.1).
- 5. Select the appropriate scan mode for the CZ-CFUNC2 communication adaptor. To properly communicate with the IntesisBox[®], please check:
 - Initial communication setting item (8.SCAn.x) is set to '0' (default value).
 - Adaptor number setting item (1.Ano.xx) matches LinkBoxEIB Adaptor address value.
 - **Instructions for the Electrical Installer** (CZ-CFUNC2) document for further information.

Modifying some other parameters can affect proper communication.

- 6. Connect the IntesisBox[®] device to the power line (see 3.4).
- 7. Connect the communication cable coming from the serial port of your laptop/desktop PC to the IntesisBox[®] port marked as EIA232 Console (see 3.3).
- 8. Open LinkBoxEIB and proceed as explained in section 4.

6.3 Troubleshooting

If IntesisBox[®] is not working properly or even not working at all, please check the following conditions to be accomplished.

6.3.1 Physical checking

First point to look at to make sure that IntesisBox[®] is not working properly is to check physical connections:

1.- Make sure that the power plug is correctly connected and current is available in the power line.

2.- Check EIA485 cable connection.

6.3.2 Software checking

Once physical connections have been checked, if functioning problems still remain, please use the LinkBoxEIB tool to monitor the working status of the device.

- To check the KNX communication status, click on the KNX button in the menu • bar (see Figure 4.1).
- To check the PANASONIC communication status, click on the **PANASONIC** • button, also in the *menu bar* (see Figure 4.1).
- To check the signal values in the KNX communication objects, click on the Signals button, also in the menu bar (see Figure 4.1).

Further information regarding the monitoring procedure and the information provided in each window can be consulted in the LinkBoxEIB Manual.

6.3.3 Power cycle issue

When there is a power blackout, it is important to keep in mind that the device power up order. Ideally, both devices should start up at the same time.

To make it easier, it is recommended to have both devices plugged in the same power line, so both will turn on at a time. In case this is not possible, please make sure that first you turn on the CZ-CFUNC2 communication adaptor and later the IntesisBox[®].

6.3.4 256, 257 and 258 Error

Those errors are used by IntesisBox[®] to check proper communication between CZ-CFUNC2 and the PA-AC-KNX-64/128 device and to confirm the presence of indoor units in the adaptor link.

During scanning process, error 258 is shown to indicate that this process is ongoing. If during the scanning process one of the adaptors is not answering, the error code for the adaptor will be 256 (communication error). If it answers, it will keep the 258 value.

After this first tracking cycle, every indoor unit is checked one by one. If the indoor unit is not found, a 257 error will be shown for that indoor unit. Error 257 prevails in front of error 256.

During normal functioning period (polling), after setup process, if there is an error in any adaptor or indoor unit this error will be shown in the proper communication object with is current value.

7. Mechanical & Electrical features

Enclosuro	Plastic, type PC (UL 94 V-0).		
LIICIOSULE	Dimensions: 107mm x 105mm x 58mm.		
Color	Light Grey. RAL 7035.		
	9 to 30Vdc +/-10%, Max.: 125mA.		
	24Vac +/-10% 50-60Hz, Max.: 127mA		
Power	Must use a NEC Class 2 or Limited Power Source (LPS) and SELV		
	rated power supply.		
	Plug-in terminal block for power connection (2 poles).		
Terminal wiring	Per terminal: solid wires or stranded wires (twisted or with ferrule)		
(for power supply	1 core: 0.5 2.5mm ²		
and low-voltage	2 cores: 0.5 1.5mm ²		
signals)	3 cores: not permitted		
Mounting	Wall.		
woulting	DIN rail EN60715 TH35.		
CZ-CFUNC2 Port	1 x EIA485 Plug-in screw terminal block (2 poles)		
Ethernet Port	1 x Ethernet 10Base-T (RJ45)		
KNV Dort	1 x KNX TP1 (EIB) port opto-isolated. Plug-in terminal bloc (2		
NNA PUIL	poles). TNV-1		
	1 x Power.		
LED indicators	2 x KNX port activity (Tx, Rx)		
	2 x Ethernet port (LNK, ACT)		
Console port	EIA232. DB9 female connector (DCE). SELV		
Configuration	guration Via console port. ¹		
Firmware	e Allows upgrades via console port.		
Operational	0° C to $1/10^{\circ}$ C		
temperature			
Operational	5% to 95% pon-condensing		
humidity			
Protection	IP20 (IEC60529).		
RoHS conformity	Compliant with RoHS directive (2002/95/CE).		
Norms and	CE conformity to EMC directive (2004/108/EC) and Low-voltage		
	directive (2006/95/EC)		
	EN 61000-6-2		
standards	EN 61000-6-3		
	EN 60950-1		
	EN 50491-3		

 Table 7.1 IntesisBox[®] Mechanical and Electrical Characteristics

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

¹ Standard cable DB9male-DB9 female 1,8 meter long is supplied with the device for connection to a PC COM port for configuring and monitoring the device. The configuration software, compatible with Windows® operating systems, is also supplied.

Free space recommended in the install location of the device, with spacing enough for external connections.

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL

http://www.intesis.com info@intesis.com +34 938047134

8. AC Unit Types compatibility

Please, check compatibility list at to know which Panasonic ECOi and PACi are compatible with our gateway.

http://www.intesis.com/pdf/IntesisBox_PA-RC2-xxx-1_Panasonic_Compatibility.pdf

9. Error codes

This list contains all possible values shown in KNX communication objects for "Error Code".

Error Code	Error in Control Panel	Error category	Error Description
0	N/A	IntesisBox	No active error
1	A01		GHP - Engine oil pressure fault
2	A02		GHP - Engine oil level fault
3	A03		GHP - Engine over speed
4	A04		GHP - Engine under speed
5	A05		GHP - Ignition power supply failure
6	A06		GHP - Engine start up failure
7	A07		GHP - Fuel gas valve failure
8	A08		GHP - Engine stalled
9	A09		GHP - Engine overload
10	A10		GHP - High exhaust gas temp
11	A11		GHP - Engine oil level failure
12	A12		GHP - Throttle actuator fault
13	A13		GHP - Fuel gas valve adjustment failure
14	A14	GHP	GHP - Engine oil pressure sensor fault
15	A15	Engine	GHP - Starter power output short circuit
16	A16	Issues	GHP - Starter motor locked
17	A17		GHP - Starter current (CT) coil failed
19	A19		GHP - Wax Valve (3 Way) fault
20	A20		GHP - Cooling water temp high
21	A21		GHP - Cooling water level fault
22	A22		GHP - Cooling water pump fault
23	A23		GHP - Engine crank angle sensor failure
24	A24		GHP - Engine cam angle sensor failure
25	A25		GHP - Clutch fault
26	A26		GHP - Misfire
27	A27		GHP - Catalyst temperature fault
28	A28		GHP - Generator fault
29	A29		GHP - Converter fault
30	A30		GHP - Fuel gas pressure low
33	C01		Duplicated setting of control address
34	C02		Central control number of units mis-matched
35	C03		Incorrect wiring of central control
36	C04		Incorrect connection of central control
37	C05		System Controller fault, error in transmitting comms signal, i/door or o/door unit not working, wiring fault
38	C06	Controller Issues	System Controller fault, error in receiving comms signal, i/door or o/door unit not working, wiring fault, CN1 not connected correctly
44	C12		Batch alarm by local controller
48	C16		Transmission error from adaptor to unit
49	C17		Reception error to adaptor from unit
50	C18		Duplicate central address in adaptor
51	C19		Duplicate adaptor address

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

IntesisBox[®] is a registered trademark of Intesis Software SL

r			
52	C20		Mix of PAC & GHP type units on adaptor
53	C21		Memory fault in adaptor
54	C22		Incorrect address setting in adaptor
55	C23		Host terminal software failure
56	C24		Host terminal hardware failure
57	C25		Host terminal processing failure
58	C26		Host terminal communication failure
60	C28		Reception error of S-DDC from host terminal
61	C29		Initialization failure of S-DDC
63	C31		Configuration change detected by adaptor
65	E01		Remote control detecting error from indoor unit, Address not set/Auto address failed. Check interconnecting wiring etc. Re- address system.
66	E02		Remote detecting error from indoor unit,
67	E03		Indoor unit detecting error from remote,
68	E04		Indoor seeing error from outdoor. Qty of i/d units connected are less than qty set. Check; all i/d units are ON, reset turn off all units wait 5min power up
69	E05		Indoor unit detecting error from outdoor unit, Error in sending comms signal
70	E06		Outdoor unit detecting error from indoor unit, Error in receiving comms signal
71	E07		Outdoor unit detecting error from indoor unit, Error in sending comms signal
72	E08		Incorrect setting indoor/controller, Indoor address duplicated
73	FUQ		Incorrect setting indoor/controller, Remote address duplicated or
73 E09	200		IR wireless controller not disabled
74	E10		Indoor unit detecting error from 'option' plug, Error in sending comms signal
75	E11	g and	Indoor unit detecting error from 'option' plug, Error in receiving comms signal
76	E12	ation	Auto addressing failed, Auto address connector CN100 shorted during auto addressing
77	E13	FIODIEITIS	Indoor unit failed to send signal to remote controller
78	E14		Setting Failure, Duplication of master indoor units
79	E15		Auto addressing failed, Number of indoor units connected are
80	E16		Auto addressing failed, Number of indoor units connected are
81	F17		Group control wiring error, Main indoor unit not sending signal
82	E19		for sub indoor units Group control wiring error, Main indoor unit not receiving signal
02			for sub indoor units
84	E20		Auto addressing failed, No indoor units connected
88	E24		Auto addressing failed, Error on sub outdoor unit
89	E25		Auto addressing failed, Error on outdoor unit address setting
90	E26		Auto addressing failed, Quantity of main and sub outdoor units do not correspond to the number set on main outdoor unit P.C.B.
93	E29		Auto addressing failed, Sub outdoor unit not receiving comms for main outdoor unit
95	E31		Between units, Comms failure with MDC, does E31 remain after power is re-instated? If so replace PCB. & power PCB
97	F01		Indoor Heat Exch inlet temp sensor failure (E1)
98	F02	Sonoor	Indoor Heat Exch freeze temp sensor failure (E2)
99	F03	Sensor	Indoor Heat Exch outlet temp sensor failure (E3)
100	F04		Outdoor Discharge temp sensor failure (TD) or (DISCH1)
101	F05		Outdoor Discharge temp sensor failure (DISCH2)

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

 $\textbf{IntesisBox}^{\circledast} \textit{ is a registered trademark of Intesis Software SL}$

IntesisBox[®] KNX – Panasonic AC

102	F06		Outdoor Heat Exch temp sensor failure (C1) or (EXG1)
103	F07		Outdoor Heat Exch temp sensor failure (C2) or (EXL1)
104	F08		Outdoor Air temp sensor failure (TO)
106	F10		Indoor inlet temp sensor failure
107	F11		Indoor outlet temp sensor failure
108	F12		Outdoor Intake sensor failure (TS)
109	F13		GHP - Cooling water temperature sensor failure
112	F16		Outdoor High pressure sensor failure
113	F17		GHP - Cooling water temperature sensor fault
114	F18		GHP - Exhaust gas temperature sensor fault
116	F20		GHP Clutch coil temperature fault
110	F23		Outdoor Heat Exch temp sensor failure (EXG2)
120	F24		Outdoor Heat Exch temp sensor failure (EXI2)
120	F20		
125	F30		Clock Function (RTC) fault
120	F30 E21		
127			Compresser Foult Over surrent (Comp1)
129			Compressor Fault, Over current (Comp1)
130	HUZ		Compressor Fault, Locked rola current detected (Compr)
131	H03		Compressor Fault, No current detected (Comp1)
133	H05		Compressor Fault, Discharge temp not detected (Comp1)
134	H06		Compressor Fault, Low Pressure trip
135	H07		Compressor Fault, Low oil level
136	H08		Compressor Fault, Oil sensor Fault (Comp1)
139	H11		Compressor Fault, Over current (Comp2)
140	H12	Compress	Compressor Fault, Locked rota current detected (Comp2)
141	H13	or Issues	Compressor Fault, No current detected (Comp2)
143	H15		Compressor Fault, Discharge temp not detected (Comp2)
149	H21		Compressor Fault, Over current (Comp3)
150	H22		Compressor Fault, Locked rota current detected (Comp3)
151	H23		Compressor Fault, No current detected (Comp3)
153	H25		Compressor Fault, Discharge temp not detected (Comp3)
155	H27		Compressor Fault, Oil sensor fault (Comp2)
156	H28		Compressor Fault. Oil sensor (connection failure)
159	H31		Compressor Fault. IPM trip (IMP current on temperature)
193	L01		Setting Error, Indoor unit group setting error
194	L02		Setting Error, Indoor/outdoor unit type/model miss-matched
195	L03		Duplication of main indoor unit address in group control
196	L04		Duplication of outdoor unit system address
4.07	1.05		2 or more controllers have been set as 'priority' in one system -
197	L05		shown on controllers set as 'priority'
400	1.00		2 or more controllers have been set as 'priority' in one system -
198	L06		shown on controllers not set as 'priority'
199	L07		Group wiring connected on and individual indoor unit
200	L08	Incorrect	Indoor unit address/group not set
201	L09	Settings	Indoor unit capacity code not set
202	L10	, v	Outdoor unit capacity code not set
203	L11		Group control wiring incorrect
205	L13	1	Indoor unit type setting error, capacity
207	 I 15	1	Indoor unit paring fault
208	L 16	- - - -	Water heat exch unit setting failure
209	I 17		Miss-match of outdoor unit with different refrigerant
210	I 18		4-way valve failure
210	I 10		Water heat exch unit dunlicated address
211	L 13 01		Gas type setup failure
213		Indoor Unit	Indoor unit fault. Fan motor thermal overload
220		Droblomo	Outdoor unit foult. Comprosport motor thermal overload ever er
220	P02	FIODIEITIS	Outdoor unit rauit, Compressor motor thermal overload, over or

© Intesis Software S.L. - All rights reserved This information is subject to change without notice

 $\textbf{IntesisBox}^{\circledast} \textit{ is a registered trademark of Intesis Software SL}$

IntesisBox[®] KNX – Panasonic AC

			under voltage
			Outdoor unit fault, Compressor discharge temperature too high
227	P03		(Comp1) over 111 °C. Low on ref gas, exp valve, pipework
			damage.
228	P04		Outdoor unit fault, High pressure trip
220	DOF		Outdoor unit fault, Open phase on power supply. Check power
229	F03		on each phase, inverter pcb, control pcb
233	P09		Indoor unit fault, Ceiling panel incorrectly wired
234	P10		Indoor unit fault, Condensate float switch opened
235	P11		GHP - Water Heat exch low temp (frost protection) fault
236	P12		Indoor unit fault, Fan DC motor fault
238	P14		Input from leak detector (If fitted)
000			Refrigerant loss, high discharge temp and EEV wide open and
239	P15		low compressor current draw.
240	P16		Outdoor unit fault, Open phase on compressor power supply
			Outdoor unit fault, Compressor discharge temperature too high
241	P17		(Comp2) over 111 degC. Low on ref gas, exp valve, pipework
			damage.
242	P18		Outdoor unit fault, By-pass valve failure
			Outdoor unit fault, 4 way valve failure, i/door temp rises in
243	P19		cooling or fills in heating. Check wiring, coil, pcb output, valve
			operation.
244	P20		Ref gas, high temp/pressure fault, heat exch temp high C2, 55-
211	1 20		60 degC, cooling over-load, sensor fault.
	500		Outdoor unit fan motor fault, fan blade jammed, check
246	P22		connections, does fan turn freely, motor resistance 30-400hm on
			each pair, no fan fault, yes pcb fault.
050	DOC		Outdoor unit fault, Compressor overcurrent - check winding
250	P26		resistance, inverter failure - check internal resistance term HIC +
			& - to UVW 200-300Konm or more
252	D20		Circuit (MDC) foult, inventer circuit lault - Motor-current Detection
252	F29		of current (MDC) fault, check comp windings, sensors CT & TS, if
			Indoor unit fault. System controller detected fault on sub indoor
253	P30		unit
255	P31		Simultaneous operation multi control fault. Group controller fault
200	1.01		Error in the communication of PA-AC-KNX-64/128 device with
256	N/A N/A	IntesisBox	the C7-CFUNC2 communication adaptor
257			Indoor Unit doesn't exist
258	N/A		Scan in process
200			

Table 9.1 Error codes

In case you detect an error code not listed, contact your nearest PANASONIC technical support service.

