

Bedienungs- und Installationsanleitung

Regelungs- und Pumpeneinheit für Solaranlagen

Bedienungs- und Installationsanleitung Regelungs- und Pumpeneinheit

Deutsch

Inhaltsverzeichnis

2 Sic	herheit4
2.1 A	nleitung beachten4
2.2 W	/arnhinweise und Symbolerklärung
2.3 G	efahren vermeiden
2.4 B	estimmungsgemäße Verwendung
2.1 D	inweise zur Betriebssicherheit 6
2.0 11	
3 Pro	duktbeschreibung7
31 A	ufbau und Bestandteile der Solar-Anlage 7
32 K	urzheschreibung 8
33 S	vstemkomponenten 8
331	Regelungs- und Pumpeneinheit FKSRPS4A 8
3.3.2	Optionales Zubehör
4 Mo	ntage9
4.1 A	nlagenkonzepte
4.1.1	Parallelschaltung
4.1.2	Serienschaltung
4.2 R	egelungs- und Pumpeneinheit montieren 10
4.2.1	Montage Pumpeneinheit
4.2.2	Montage FlowSensor, FlowGuard (optional) 11
4.2.3	Montage Temperaturfühler 12
4.2.4	Regelung vorbereiten und anbringen 13
4.2.5	Abdeckhaube anbringen
5 Inb	etriebnahme und Außerbetriebnahme. 16
5.1 lr	betriebnahme16
5.2 A	ußerbetriebnahme17
5.2.1	Vorübergehende Stilllegung 17
5.2.2	Endgültige Stilllegung 18
6 Reg	jelung
6 Reg	Jelung 19 edien- und Anzeigeelemente 19
6 Reg 6.1 B 6.2 F	Jelung 19 edien- und Anzeigeelemente 19 unktionsweise der Regelung 19
6 Reg 6.1 B 6.2 F 6.2.1	jelung 19 edien- und Anzeigeelemente 19 unktionsweise der Regelung 19 Pumpenbetrieb 19 Deseter Funktion für kehe Kollekterbergerten 20
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2	gelung 19 edien- und Anzeigeelemente 19 unktionsweise der Regelung 19 Pumpenbetrieb 19 Booster-Funktion für hohe Kollektortemperaturen 20 20
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.3	gelung 19 edien- und Anzeigeelemente 19 unktionsweise der Regelung. 19 Pumpenbetrieb 19 Booster-Funktion für hohe Kollektortemperaturen 20 Startoptimierung Startoptimierung 20
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.4	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick Eunktionen20
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.6 6.2.7	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung21
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Drehzahlregelung der Solar Betriebspumpe PS22
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion22
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion22Frostschutz-Funktion23
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23instellung und Menüführung23
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23instellung und Menüführung23Startanzeige24Betriebsanzeige25
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellmenü25
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.2.5	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung25Passworteingabe27
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.2.6	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung ünd Menüführung25Passworteingabe27Sprachwahl27Denster sinstellung27
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.2.7	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Einstellung der Einbeurnenitien der27
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Einstellung der Einbauposition des27
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte und21Ertragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Kollektortemperaturfühlers27Manuelle Einstellung der27
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.22 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Einstellung der Einbauposition des27Kollektortemperaturfühlers27Manuelle Einstellung der28
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9	Jelung 19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen.20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23instellung und Menüführung23Startanzeige24Betriebsanzeige25Einstellmenü25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Kollektortemperaturfühlers27Manuelle Einstellung der28Korrekturwerte für Messstellen28
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10	gelung19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung23Startanzeige24Betriebsanzeige25Passworteingabe27Sprachwahl27Parameter einstellen und zurücksetzen27Kollektortemperaturfühlers27Manuelle Einstellung der28Korrekturwerte für Messstellen28Brennersperrkontakt28
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.4 F	gelung19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung23Startanzeige24Betriebsanzeige25Einstellmenü27Parameter einstellen und zurücksetzen27Sprachwahl27Manuelle Einstellung der28Korrekturwerte für Messstellen28Brennersperrkontakt28instellempfehlungen29
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.4 E 6.4.1	gelung19edien- und Anzeigeelemente19unktionsweise der Regelung.19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung23Startanzeige25Einstellmenü27Sprachwahl27Parameter einstellen und zurücksetzen27Kollektortemperaturfühlers27Manuelle Einstellung der28Korrekturwerte für Messstellen28Brennersperrkontakt28instellempfehlungen29Standard-Parametereinstellungen29
6 Reg 6.1 B 6.2 F 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.3 E 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.4 E 6.4.1	gelung19edien- und Anzeigeelemente19unktionsweise der Regelung19Pumpenbetrieb19Booster-Funktion für hohe Kollektortemperaturen 20Startoptimierung20Einschaltsperre-Funktionen20Pumpenkick-Funktion20Handbetrieb21FlowSensor21Leistungsberechnung, Maximalwerte undErtragszählung21Drehzahlregelung der Solar Betriebspumpe PS22Gesamt-Reset-Funktion23Anlagenleckschutz-Funktion23Startanzeige24Betriebsanzeige25Einstellung und Menüführung23Startanzeige24Betriebsanzeige25Einstellung der Einbauposition des27Kollektortemperaturfühlers27Manuelle Einstellung der28Korrekturwerte für Messstellen28Brennersperrkontakt28instellempfehlungen29Standard-Parametereinstellungen, empfohlene29

6.4.3	3 Einstellungsempfehlung für die Nachheizung über externe Wärmequellen oder den Elektroheizstab,
6.4.4	Ipps für optimiertes Nutzungsverhalten 31
6.4.	5 Trinkwasserhygiene
7 F	ehler und Störungen
7.1	Ereignisanzeige
7.2	Störungsbehebung
8 H	ydraulische Systemeinbindung35
8.1	Schemata
8.2	Anschluss einer Druck-Kollektoranlage 37
αт	echnische Daten 38
9.1	
9.2	Regelungs- und Pumpeneinneit EKSRPS4A 38
9.3	Fühlerkenndaten
9.4	Pumpenkennlinie
10 N	otizen40
11 S	tichwortverzeichnis43

2 Sicherheit

2 Sicherheit

2.1 Anleitung beachten

Bei dieser Anleitung handelt es sich um die >> **Originalversion** << in Ihrer Sprache.

Alle erforderlichen Tätigkeiten zur Montage, Inbetriebnahme, Bedienung und Einstellung der Anlage sind in dieser Anleitung beschrieben. Für detaillierte Informationen zu den angeschlossenen Komponenten Ihrer Heizungsanlage beachten Sie bitte die jeweiligen Unterlagen.

- Arbeiten an der Daikin EKSRPS4A (wie z. B. der hydraulische und elektrische Anschluss und die erste Inbetriebnahme) nur durch Personen, die autorisiert sind und zu der jeweiligen Tätigkeit eine befähigende technische oder handwerkliche Ausbildung erfolgreich absolviert, sowie an fachlichen, von der jeweils zuständigen Behörde anerkannten Fortbildungsveranstaltungen teilgenommen haben. Hierzu zählen insbesondere Heizungsfachkräfte, die aufgrund ihrer fachlichen Ausbildung und ihrer Sachkenntnis, Erfahrungen mit der fachgerechten Installation und Wartung von Heizungs- und Solaranlagen haben.
- Bitte lesen Sie diese Anleitung aufmerksam durch, bevor Sie mit der Montage und Inbetriebnahme beginnen oder Eingriffe in der Anlage vornehmen.
- Warnhinweise unbedingt beachten!

Mitgeltende Dokumente

Nachfolgend aufgeführte Dokumente sind Teil der technischen Dokumentation der Daikin Solaranlage und ebenfalls zu beachten. Die Dokumente sind im Lieferumfang der jeweiligen Komponenten enthalten.

- Daikin Hochleistungs-Flachkollektoren Solar EKSV21P, EKSV26P und EKSH26P: Installationsanleitungen zur Aufdach-, Indach-, bzw. Flachdachmontage
- Daikin Warmwasserspeicher (EKHWP oder Altherma EHS(X/H)): Betriebs- und Installationsanleitungen

Bei Anschluss an externe Wärmeerzeuger oder Speicherbehälter, die nicht im Lieferumfang enthalten sind, gelten die jeweils dazugehörigen Betriebs- und Installationsanleitungen.

2.2 Warnhinweise und Symbolerklärung

Bedeutung der Warnhinweise

In dieser Anleitung sind die Warnhinweise entsprechend der Schwere der Gefahr und der Wahrscheinlichkeit ihres Auftretens systematisiert.

GEFAHR!

Weist auf eine unmittelbar drohende Gefahr hin.

Die Missachtung des Warnhinweises führt zu schwerer Körperverletzung oder Tod.

WARNUNG!

Weist auf eine möglicherweise gefährliche Situation hin.

Die Missachtung des Warnhinweises kann zu schwerer Körperverletzung oder Tod führen.

Weist auf eine möglicherweise schädliche Situation hin.

Die Missachtung des Warnhinweises kann zu Sach- und Umweltschäden führen.

	Dieses Symbol kennzeichnet Anwender-
Ĭ	tipps und besonders nützliche Informatio-
	nen, jedoch keine Warnungen vor
	Gefährdungen.

Spezielle Warnsymbole

Einige Gefahrenarten sind durch spezielle Warnsymbole dargestellt.

Elektrischer Strom

Explosionsgefahr

Verbrennungsgefahr oder Verbrühungsgefahr

Handlungsanweisungen

- Handlungsanweisungen werden als Liste dargestellt. Handlungen, bei denen zwingend die Reihenfolge einzuhalten ist, werden nummeriert dargestellt.
 - → Resultate von Handlungen werden mit einem Pfeil gekennzeichnet.

2.3 Gefahren vermeiden

Daikin Solaranlagen sind nach dem Stand der Technik und den anerkannten technischen Regeln gebaut. Dennoch können bei unsachgemäßer Verwendung Gefahren für Leib und Leben von Personen sowie Sachbeschädigungen entstehen. Zur Vermeidung von Gefahren Daikin Solaranlagen nur montieren und betreiben:

- bestimmungsgemäß und in einwandfreiem Zustand,
- sicherheits- und gefahrenbewusst.

Dies setzt die Kenntnis und Anwendung des Inhalts dieser Anleitung, der einschlägigen Unfallverhütungsvorschriften sowie der anerkannten sicherheitstechnischen und arbeitsmedizinischen Regeln voraus.

2.4 Bestimmungsgemäße Verwendung

Die Daikin Solaranlage darf ausschließlich zur solaren Heizungsunterstützung von Warmwasser-Heizungssystemen verwendet werden. Die Daikin Solaranlage darf nur gemäß den Angaben dieser Anleitung montiert, angeschlossen und betrieben werden.

Die Regelungs- und Pumpeneinheit ist nicht für den Gebrauch in einer explosiven Atmosphäre geeignet.

Jede andere oder darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß. Für hieraus entstehende Schäden trägt das Risiko allein der Betreiber.

Zur bestimmungsgemäßen Verwendung gehört auch die Einhaltung der Wartungs- und Inspektionsbedingungen. Ersatzteile müssen mindestens den vom Hersteller festgelegten technischen Anforderungen entsprechen. Dies ist z. B. durch Original-Ersatzteile gegeben.

2 Sicherheit

2.5 Hinweise zur Betriebssicherheit

Arbeiten auf dem Dach

- Montagearbeiten auf dem Dach nur durch autorisierte und geschulte Fachkräfte (Heizungsfachbetrieb, Dachdecker, etc.) unter Beachtung der für Dacharbeiten gültigen Unfallverhütungsvorschriften.
- Montagematerial und Werkzeug gegen Herunterfallen sichern.
- Verkehrsbereich unterhalb der Dachfläche gegen unbefugtes Betreten sichern.

Vor dem Arbeiten an der Heizungsanlage

- Arbeiten an der Heizungsanlage (wie z. B. Installation, Anschluss und erste Inbetriebnahme) nur durch autorisierte und geschulte Heizungsfachkräfte.
- Bei allen Arbeiten an der Heizungsanlage den Hauptschalter ausschalten und gegen unbeabsichtigtes Einschalten sichern.

Elektrische Installation

- Elektrische Installation, nur durch elektrotechnisch qualifiziertes Fachpersonal und unter Beachtung der gültigen elektrotechnischen Richtlinien, sowie der Vorschriften des zuständigen Elektrizitätsversorgungsunternehmens (EVU).
- Den Netzanschluss gemäß IEC 60335-1 über eine Trennvorrichtung herstellen, welche eine Trennung jedes Pols mit einer Kontaktöffnungsweite entsprechend den Bedingungen der Überspannungskategorie III für volle Trennung aufweist und einen Fehlerstrom-Schutzschalter (FCD) mit einer Reaktionszeit ≤ 0,2 s einbauen.
- Vor dem Netzanschluss, die auf dem Typenschild angegebene Netzspannung (230 V, 50 Hz) mit der Versorgungsspannung vergleichen.
- Vor Arbeiten an Strom führenden Teilen, diese von der Stromversorgung trennen (Hauptschalter ausschalten, Sicherung trennen) und gegen unbeabsichtigtes Wiedereinschalten sichern.
- Geräteabdeckungen und Wartungsblenden nach Beendigung der Arbeiten sofort wieder anbauen.

Betreiber einweisen

- Bevor Sie die Solaranlage übergeben, erklären Sie dem Betreiber, wie er sie bedienen und kontrollieren kann.
- Dokumentieren Sie die Übergabe, indem Sie das beigefügte Installations- und Unterweisungsformular gemeinsam mit dem Betreiber ausfüllen und unterschreiben.

3 Produktbeschreibung

Aufbau und Bestandteile der Solar-Anlage 3.1

- Kaltwasser Anschlussleitung 1
- 2 Trinkwasser (warm) Verteilleitung
- 3 Edelstahl-Wellrohr Wärmetauscher für Trinkwasser (warm)
- 4a Edelstahl-Wellrohr Wärmetauscher zur Speicherladung
- Edelstahl-Wellrohr Wärmetauscher zur Speicherladung und Hei-4b zungsunterstützung
- 5 Tauchhülse für Speicher-, Rücklauftemperaturfühler
- 6 Füllstandsanzeiger
- 7 Füll- und Entleerhahn (Zubehör KFE BA)
- 8 Solar R4-Regelung
- Solar-Rücklaufleitung (unten am Kollektor) 9
- 10 Solar-Kollektorfeld
- Solar-Vorlaufleitung (oben am Kollektor) 11
- Thermisches Mischventil (Verbrühungsschutz bauseits) 12
- Zirkulationsbremse (Zubehör) 13
- Solar-Vorlauf Schichtungsrohr 14
- Edelstahl-Wellrohr Wärmetauscher zur Heizungsunterstützung 15
- Wärmedämmhülle für Edelstahl-Wellrohr Wärmetauscher zur 16 Heizungsunterstützung
- 17 Solar-Rücklaufanschluss
- Anschluss Sicherheitsüberlauf 18

- Brauchwasserzone Α R
- Solarzone
- FLS Solar FlowSensor (Durchflussmessung)
- Solar Betriebspumpe P_{S}
- EKSRPS4A
- Regelungs- und Pumpeneinheit t_{DHW} Speichertemperaturfühler

Solar Kollektortemperaturfühler

- Τ_K T_R Solar Rücklauftemperaturfühler
- Solar Speichertemperaturfühler
- Τs T_V Solar Vorlauftemperaturfühler
- EHS(X/H)

Solarspeicher mit integriertem Wärmepumpeninnengerät **EKHWP**

Energiespeicher EKHWP

Tab. 3-1 Legende zu Bild 3-1

3 Produktbeschreibung

3.2 Kurzbeschreibung

Die Daikin Solaranlage ist ein thermisches Solarsystem zur Warmwassererzeugung und Heizungsunterstützung.

Die Daikin Regelungs- und Pumpeneinheit EKSRPS4A kann nur in dem drucklosen Daikin Solar System (DrainBack) und mit dem dafür vorgesehenen Montagematerial installiert und betrieben werden.

Voraussetzung für den störungsfreien Betrieb im DrainBack-System ist, dass die Verbindungsleitungen mit durchgehendem Gefälle (mindestens 2 %) verlegt, sowie die Kollektorunterkanten bei wechselseitigem Anschluss mit stetigem Gefälle zum Rücklaufanschluss bzw. bei gleichseitigem Anschluss waagerecht montiert sind.

Betriebsweise

Die Hochleistungs-Flachkollektoren Solar EKSV21P, EKSV26P und EKSH26P wandeln mit hohem Wirkungsgrad die Sonnenstrahlung in Wärme um. Wärmeträgermedium ist Leitungswasser.

Erreichen die Kollektoren ein nutzbares Temperaturniveau, wird das drucklos im Speicher befindliche Pufferwasser direkt durch die Kollektoren gepumpt. Anderenfalls schaltet die Förderpumpe ab und das System entleert sich automatisch. Diese Betriebsweise hat mehrere Vorteile:

- Hohe Betriebssicherheit, da ohne schadens- oder störempfindliche Bauteile (wie z. B. Ausdehnungsgefäß, Sicherheitsventil, Entlüftungsventile).
- Gute Wärmeübertragung und Wärmespeicherkapazität (arbeitet ohne Frostschutzmittel).
- Geringer Wartungsaufwand.
- Frostsicherheit.
- Ohne zusätzliche Solar-Wärmetauscher.
- Keine Stagnationsprobleme.

Modularer Aufbau

Die Anlage besteht aus mehreren, weitgehend vormontierten Komponenten. Stecktechnik und ein hoher Vorfertigungsgrad ermöglichen eine schnelle und einfache System-Montage.

Speicherbehälter

Als Speicherbehälter für die Daikin Solaranlage können verwendet werden:

- Daikin EKHWP: Wärmegedämmter, druckloser Kunststoffspeicher (mit Anschlussmöglichkeit einer Daikin Luft-Wasser-Wärmepumpe).
- Daikin Altherma EHS(X/H): Solarspeicher mit integriertem Innengerät einer Luft-Wasser-Wärmepumpe.

Die in dieser Anleitung aufgeführten Handlungsanweisungen und Beschreibungen gelten grundsätzlich für alle bei dieser Solaranlage verwendbaren Daikin Speicherbehälter, auch wenn zu Darstellungszwecken nur ein Typ beschrieben wird. Bei Abweichungen zu anderen Speicherbehältern wird gesondert darauf hingewiesen.

Elektronische Regelung

Die vollelektronische Daikin Solar R4-Regelung sorgt für eine optimale Solarwärmenutzung (Warmwassererwärmung, Heizungsunterstützung) und die Einhaltung aller betrieblichen Sicherheitsaspekte. Die für einen komfortablen Betrieb erforderlichen Parameter sind bereits ab Werk voreingestellt.

3.3 Systemkomponenten

3.3.1 Regelungs- und Pumpeneinheit EKSRPS4A

Bestehend aus:

- 1 Abdeckhaube
- 2 Anschlussverrohrung mit Solar Betriebspumpe
- 3 Daikin Solar R4-Regelung mit Speichertemperaturfühler, Rücklauftemperaturfühler, Anschlusskabel Kollektortemperaturfühler, FlowSensor, Anschlusskabel 230 V-Netzanschluss (3 m)
- 4 Zubehörtasche (Winkel, 4 Senkkopfschrauben, 4 Blechschrauben, Fühlerstopfen, Kunststoffstopfen)
- 5 Halterungsmaterial (Haltewinkel für Pumpenaufnahme, Haltebügel und Befestigungswinkel Regelung)
- 6 Solar Dokumentation

Bild 3-2 Regelungs- und Pumpeneinheit (EKSRPS4A)

3.3.2 Optionales Zubehör

KFE-Befüllanschluss

Zum komfortablen Befüllen und Entleeren des Daikin Warmwasserspeichers kann der KFE-Befüllanschluss (KFE BA) angeschlossen werden.

Zur Einstellung und Anzeige der Durchflussmenge von 2-6 l/min kann das Einregulierventil (FlowGuard FLG) verwendet werden.

Solar-Speichererweiterungs-Set

Wenn die Wärmeleistung eines einzelnen Daikin Warmwasserspeichers nicht ausreicht, können auch mehrere Sanicube / HybridCube modular zusammengeschlossen werden.

Folgende Komponenten werden angeboten:

- Solar-Speichererweiterungs-Set CON SX
- Solar-Speichererweiterungs-Set 2 CON SXE
- FlowGuard FLG

Die Montage und Bedienung dieser Zubehörkomponenten sind ausführlich in den jeweiligen mitgelieferten Bedienungs- und Montageanleitungen beschrieben.

4 Montage

4.1 Anlagenkonzepte

Daikin Solaranlagen werden in der Regel nach einem der nachfolgend dargestellten Anlagenkonzepte aufgebaut. Informationen zur hydraulischen Systemeinbindung mit Beispielschemata finden Sie im Kapitel 8 "Hydraulische Systemeinbindung".

4.1.1 Parallelschaltung

Bild 4-2 Gleichseitig angeschlossenes Solar-Kollektorfeld (max. 3 Solar-Kollektoren)

4.1.2 Serienschaltung

Alternativ zu der in dieser Anleitung beschriebenen reinen Parallelschaltung der Solar-Kollektoren können bei Bedarf maximal 3 Kollektorreihen auch übereinander montiert werden. Übereinander liegende Kollektoren bzw. Kollektorfelder müssen in Reihe geschaltet werden (Bild 4-3).

Bild 4-3 Alternative Solar-Kollektoranordnung

- 1 Kollektorverbinder
- 2 Montage-Profilschiene
- 3 Kollektorsicherungshaken
- 4 Solar-Kollektor
- 5 Rücklaufanschluss Kollektor
- 6 Vorlaufanschluss Kollektor
- 7 Kollektor-Verschlusskappe
- 8 Dachdurchführungen für Vor- bzw. Rücklauf
- 9 Solar-Rücklaufleitung
- 10 Solar-Vorlaufleitung
- 11 Kollektorreihenverbinder
- **12** Solar-Kollektorfeld (2x 2 Kollektoren)
- Tab. 4-1 Legende zu Bild 4-3

4 Montage

4.2 Regelungs- und Pumpeneinheit montieren

WARNUNG!

Strom führende Teile können bei Berührung zu einem Stromschlag führen und lebensgefährliche Verletzungen sowie Verbrennungen verursachen.

- Vor Beginn von Arbeiten am Kesselschaltfeld oder an der Solarregelung, Geräte von der Stromversorgung trennen (Sicherung, Hauptschalter ausschalten) und gegen unbeabsichtigtes Wiedereinschalten sichern.
- Um Gefährdungen durch beschädigte elektrische Leitungen zu vermeiden, diese immer durch elektrotechnisch qualifiziertes Fachpersonal unter Beachtung der gültigen elektrotechnischen Richtlinien sowie der Vorschriften des zuständigen Elektrizitätsversorgungsunternehmens erneuern.
- Die entsprechenden Arbeitssicherheitsvorschriften einhalten.

GEFAHR!

Austretendes Gas in unmittelbarer Nähe elektrischer Bauteile kann zur Explosion führen.

- Die Regelungs- und Pumpeneinheit EKSRPS4A, sowie elektrische Komponenten nicht an Orten installieren, wo Gefahr von austretendem, entzündlichem Gas besteht.
- Mindestabstände zu Wänden und in Schächten beachten.

4.2.1 Montage Pumpeneinheit

VORSICHT!

Bei der Montage können große Wassermengen aus dem Solarspeicher austreten.

- Die Pumpeneinheit montieren, bevor der Solarspeicher (druckloser Bereich) mit Wasser befüllt wird.
- Soll die Pumpeneinheit an einen bereits in Betrieb befindlichen Solarspeicher angeschlossen werden, muss der drucklose Speicherbereich vorher entleert werden.

Bild 4-4 Arbeitsschritt 1

Bild 4-5 Arbeitsschritt 2

Bild 4-6 Arbeitsschritt 3

Bild 4-7 Arbeitsschritt 4

Bild 4-8 Arbeitsschritt 5

Bild 4-10 Arbeitsschritt 7

Bild 4-12 Arbeitsschritt 9

Bild 4-14 Arbeitsschritt 11

Bild 4-16 Arbeitsschritt 13

Bild 4-9 Arbeitsschritt 6

Bild 4-11 Arbeitsschritt 8

Bild 4-13 Arbeitsschritt 10

Bild 4-15 Arbeitsschritt 12

VORSICHT!

Bei längeren horizontalen Leitungsstrecken mit geringem Gefälle könnten sich durch Wärmedehnung der Kunststoffrohre zwischen den Befestigungspunkten Wassersäcke mit Siphonwirkung bilden.

- Tragschalen (TS) verwenden.
- Leitungsführung niemals waagerecht, sondern immer mit stetigem Gefälle (>2 %) ausführen.

4.2.2 Montage FlowSensor, FlowGuard (optional)

Bei der Montage auf die Durchflussrichtung der Messeinrichtung achten.

FlowSensor

Der FlowSensor FLS 20 (Bild 4-18) ist eine Messeinrichtung, die gleichzeitig die Durchflussmenge im Kollektorfeld sowie die Vorlauftemperatur erfasst. Der Messbereich liegt zwischen 0 und 20 l/min (Durchflussmenge) und 0 bis 120 °C (Vorlauftemperatur). Die Messwerte werden an der Solar R4-Regelung angezeigt. Durch Drehzahlregelung der Solar Betriebspumpe P_S übernimmt die Solar R4-Regelung beim Anlagebetrieb automatisch das Einstellen des passenden Durchflusses.

- 1. Dichtung (b) am Solar-Vorlaufanschluss (a) des Warmwasserspeichers einlegen.
- 2. FlowSensor (c) auf den Solar-Vorlaufanschluss (a) des Warmwasserspeichers schrauben.
- 3. Dichtung (e) einlegen und Steckfitting (f) an den Eingang des FlowSensors (c) montieren.
- 4. Vorlaufleitung (g) (Ø 15 mm) auf die benötigte Länge kürzen und in den Steckfitting (f) einstecken.
- 5. Kabel des FlowSensors zwischen FlowSensor (c) und der Solar R4-Regelung verlegen.
- Kabel des FlowSensors am FlowSensor (c) und am Platinenrand der Solar R4-Regelung, an der Position FLS (4-polig, siehe Bild 4-24) aufstecken.

Bild 4-17 Montage FlowSensor FLS

4 Montage

Bild 4-18 FlowSensor FLS 20 ausgeliefert mit 3 m Kabel

FlowGuard

Als Zubehör erhältlich ist der FlowGuard FLG (Bild 4-20). Er ist ein Einregulierventil mit integrierter Durchflussanzeige, mit dem die Durchflussmenge durch das Kollektorfeld eingestellt werden kann. Der Anzeigebereich liegt zwischen 2 und 16 l/min.

- 1. Dichtung in den Vorlaufanschluss einlegen (siehe Bild 4-19).
- 2. FlowGuard ansetzen und festschrauben.
- 3. Dichtung einlegen und Steckfitting an den Eingang des FlowGuards montieren.
- 4. Vorbereitetes Vorlaufrohr in den Steckfitting des FlowGuards einstecken.

Bild 4-19 Arbeitsschritt 1+2

Bild 4-20 Zubehör FlowGuard FLG

4.2.3 Montage Temperaturfühler

VORSICHT!

Der Speichertemperaturfühler der Kesselregelung darf keinesfalls tiefer als 75 cm in die Fühlertauchhülse eingeführt werden. Ein zu tief eingeführter Speichertemperaturfühler kann zu einer Überhitzung der Warmwasserzone und zum "Steckenbleiben" der Kesselregelung in der Speicherladephase führen.

- a Solar Rücklauftemperaturfühler
- b Solar Speichertemperaturfühler

Bild 4-21 Arbeitsschritt 1

- 2. Rücklauftemperaturfühler im Sondenrohr auf ca. 130 cm Einstecktiefe (Kabelbinder) ausrichten.
- 3. Speichertemperaturfühler im Sondenrohr auf ca. 70 cm Einstecktiefe (Kabelbinder) ausrichten.

Bild 4-22 Arbeitsschritt 2+3

4. Stopfen in das Sondenrohr stecken und Kabel verlegen.

Bild 4-23 Arbeitsschritt 4

4.2.4 Regelung vorbereiten und anbringen

Voraussetzungen

- Für elektrische Anschlüsse und elektrische Verbrauchsmaterialien (Kabel, Isolierung, etc.) die jeweils gültigen länderspezifischen Vorschriften beachten.
- Für jeden, fest verkabelten Netzanschluss eine separate Trennvorrichtung nach EN 60335-1 zur allpoligen Abschaltung vom Stromnetz und einen Fehlerstrom-Schutzschalter mit einer Reaktionszeit ≤ 0,2 s einbauen.

Zulässige Kabeltypen an der Klemmenleiste:

- Eindrähtig $\leq 2,5 \text{ mm}^2$
- Mehrdrähtig $\leq 2,5 \text{ mm}^2$
- Mehrdrähtig mit Aderendhülsen mit Isolierkragen ≤ 1,5 mm²
- Mehrdrähtig mit Aderendhülsen ohne Isolierkragen ≤ 2,5 mm²

Bild 4-24 Anschlussbelegung

Elektrischer Anschluss

 Mitgelieferte Kabel mittels Platinenrandstecker an der Rückseite der Regelung befestigen. Die Stecker sind verwechslungssicher codiert. Im Deckel der Steuerung ist die Anschlussbelegung dargestellt.

Bild 4-25 Arbeitsschritt 1

4 Montage

2. Damit eine Zugentlastung sichergestellt wird, sind alle Kabel durch das Labyrinth zu legen.

Bild 4-26 Arbeitsschritt 2

 Kollektortemperatur-Fühlerleitung (in der Verbindungsleitung integriert) am Stecker anklemmen.

Bild 4-27 Arbeitsschritt 3

4. Stecker am Platinenrand der Steuerung, an der Position TK (2-polig, siehe Bild 4-24) aufstecken.

Bild 4-28 Grundverkabelung: FlowSensor, Speicher-, Rücklauf-, Kollektorfühler, Pumpen- und Netzzuleitung

- 5. Regelung von oben herab in den Befestigungswinkel einhängen.
 - Darauf achten, dass die Kabelschlaufen (wie in Bild 4-28 und Bild 4-29 dargestellt) nach unten zeigen.

Bild 4-29 Arbeitsschritt 5

- 6. Verkabelung der Solar Betriebspumpe P_S:
 - Das Pumpenkabel an die Solar Betriebspumpe P_S anschließen.

Bild 4-30 Arbeitsschritt 6

7. Kabel der Regelung an der Rücklaufleitung entlang legen und mit Kabelbinder fixieren.

Bild 4-31 Arbeitsschritt 7

14

4.2.5 Abdeckhaube anbringen

1. Abdeckhaube aufschieben und ausrichten. Dabei die Abdeckhaube so unter das Regelungsgehäuse schieben, dass sich eine gleichmäßige Fuge rings um die Regelung ergibt.

Bild 4-32 Arbeitsschritt 1

2. Abdeckhaube an beiden Seiten mittels Senkkopfschrauben mit dem Regelungsgehäuse verschrauben.

Bild 4-33 Arbeitsschritt 2

 Abdeckhaube auf dem darunterliegenden Speicheranschlusswinkel befestigen. Dazu die selbstschneidende Befestigungsschraube (in Abdeckhaube vormontiert) über die Vertiefung im unteren Teil der Gehäusefrontseite vorsichtig einschrauben und anschließend die Abdeckkappe aufstecken.

Bild 4-34 Arbeitsschritt 3

Bild 4-35 Komplett installierte EKSRPS4A

5 Inbetriebnahme und Außerbetriebnahme

5 Inbetriebnahme und Außerbetriebnahme

5.1 Inbetriebnahme

🛕 wa

WARNUNG!

Die Solaranlage kann erst in Betrieb genommen werden, wenn alle hydraulischen und elektrischen Verbindungen hergestellt sind.

Eine unsachgemäße Inbetriebnahme beeinträchtigt die Funktion und kann zu Schäden an der gesamten Anlage führen. Die Installation und Inbetriebnahme sollte deshalb nur durch von Daikin autorisierte und geschulte Heizungsfachkräfte erfolgen.

Vor Inbetriebnahme muss der Schutzleiter-Widerstand und der korrekte Anschluss geprüft werden.

VORSICHT!

Inbetriebnahme bei Frost kann zu Schäden an der gesamten Anlage führen.

 Inbetriebnahme bei Außentemperaturen unter 0 °C nur bei Gewährleistung einer Wassertemperatur von mindestens 5 °C im Solarkreislauf (z. B. vorheriges Aufheizen des Warmwasserspeichers).

Daikin empfiehlt, die Anlage nicht bei extremem Frost in Betrieb zu nehmen.

Führen Sie alle nachfolgend genannten Arbeiten in der vorgegebenen Reihenfolge aus!

- 1. Befüllen des Speicherbehälters:
 - Trinkwasser-Wärmetauscher befüllen.

Die Trinkwasserqualität muss der EU-Richtlinie 98/83 EC und den regional gültigen Vorschriften entsprechen.

- Pufferspeichervolumen über den Füll- und Entleerhahn (KFE BA) an der Regelungs- und Pumpeneinheit EKSRPS4A befüllen bis Wasser am Sicherheitsüberlauf austritt.
- Füll- und Entleerhahn (KFE BA) schließen.
- Solar R4-Regelung einschalten.
 → Initialisierungsphase beginnt.
- Nach Abschluss der Initialisierungsphase (Temperaturanzeige) befüllen und entlüften Sie die Solaranlage durch gleichzeitigen Druck auf beide Pfeiltasten (Handbetrieb starten).
 - ➔ Die Solar Betriebspumpe P_S läuft nun mit voller Leistung und die Solaranlage ist dem maximal möglichen Betriebsdruck ausgesetzt. Die Solaranlage füllt sich, die Luft ent-

weicht durch die Vorlaufleitung in den Luftraum des Speicherbehälters.

- 4. Dichtigkeits-Sichtkontrolle an allen Verbindungsstellen im Haus und auf dem Dach durchführen. Dabei auftretende Leckagen fachgerecht abdichten.
- 5. Solar R4-Regelung abschalten.
- 6. Füllstand im Warmwasserspeicher kontrollieren.

Innerhalb weniger Minuten nach dem Abschalten und Leerlaufen der Solaranlage, muss der Füllstandsanzeiger im Warmwasserspeicher wieder annähernd das Füllniveau erreichen.

- Ursache f
 ür einen geringf
 ügig niedrigeren F
 üllstand ist das Verbleiben einer geringen Wassermenge in den unteren Sammlerrohren der Kollektoren. Bei korrekter Ausrichtung des Kollektorfelds ist diese Wassermenge auch bei Frosteinwirkung ungef
 ährlich f
 ür den Kollektor, da gen
 ügend Ausdehnungsvolumen zur Verf
 ügung steht.
- Falls der Füllstand deutlich unter dem Füllniveau bleibt, kann dies ein Hinweis auf nicht entdeckte Undichtigkeiten oder eine fehlerhafte Leitungsführung (Wassersäcke) sein. In diesem Falle muss die Anlage noch einmal sehr genau geprüft werden.
- 7. Befüllzeit einstellen:
 - Solar R4-Regelung erneut einschalten (Initialisierungsphase beginnt).
 - Nach Abschluss der Initialisierungsphase (Temperaturanzeige) den Handbetrieb durch gleichzeitigen Druck auf beide Pfeiltasten starten.
 - Zeit stoppen, in der sich die Solaranlage vollständig befüllt. Die Anlage ist vollständig befüllt, wenn keine Luftgeräusche mehr zu hören sind und ein stabiler Wert für den Durchfluss angezeigt wird (Messstelle [Durchfluss] über Pfeiltasten ansteuern).
 - Die ermittelte Zeit zuzüglich 20 s am Parameter [Zeit P2] einstellen (siehe Abschnitt 6.3.6).
- Solar R4-Regelung durch gleichzeitigen Druck auf beide Pfeiltasten oder erneutes Aus-, Einschalten in den Automatikbetrieb schalten.
 - → Die Solaranlage ist nun betriebsbereit.

Der korrekte Durchfluss im Solarkreislauf wird durch Drehzahlregelung der Solar Betriebspumpe P_S automatisch eingestellt.

- 9. Nur bei Anschluss einer Regelungs- und Pumpeneinheit EKSRPS4A an mehrere Solarspeicher:
 - Der gesamte, mit dem FlowSensor im Solar-Vorlauf gemessene Durchfluss, muss gleichmäßig auf alle angeschlossenen Solarspeicher aufgeteilt werden. Zur Einregulierung empfiehlt sich der Einsatz eines FlowGuard (FLG) an jedem Speicher.
- 10. Betreiber einweisen, Übergabeprotokoll ausfüllen und dieses an die auf der Rückseite dieser Anleitung angegebene Adresse senden.

5.2 Außerbetriebnahme

5.2.1 Vorübergehende Stilllegung

VORSICHT!

Eine stillgelegte Heizungsanlage kann bei Frost einfrieren und dadurch beschädigt werden.

• Stillgelegte Heizungsanlage bei Frostgefahr entleeren.

Längere Zeit abgeschaltete Pumpen können festsitzen.

Bei vorübergehend stillgelegten Solaranlagen ist auch die Schutzfunktion gegen festsitzende Pumpen (Pumpenkickfunktion) deaktiviert.

Durch Ausschalten am Hauptschalter der Solar R4-Regelung oder Trennen des Netzsteckers von der Stromversorgung, kann die Daikin Solaranlage vorübergehend stillgelegt werden.

Bei Frostgefahr muss:

- die Daikin Solaranlage wieder in Betrieb genommen werden oder
- geeignete Frostschutzma
 ßnahmen f
 ür die angeschlossene Heizungsanlage und den Warmwasserspeicher getroffen werden (z. B. Entleerung).

Besteht die Frostgefahr nur wenige Tage, kann aufgrund der sehr guten Wärmedämmung auf das Entleeren des Daikin Warmwasserspeichers verzichtet werden, wenn die Speichertemperatur regelmäßig

beobachtet wird und nicht unter +3 °C sinkt. Ein Frostschutz für das angeschlossene Wärmeverteilungssystem besteht dadurch allerdings nicht.

Speicherbehälter entleeren

- Alle Stromkreise der Solar- und Heizungsanlage von der Stromversorgung trennen und gegen unbeabsichtigtes Wiedereinschalten sichern.
- Ablaufschlauch an den Füll- und Entleerhahn (KFE BA) (Bild 5-1, Pos. A) anschließen und zu einer mindestens bodentiefen Ablaufstelle verlegen.

Ist kein **KFE-Befüllanschluss** verfügbar, kann alternativ das Anschlussstück (Bild 5-1, Pos. C) vom Sicherheitsüberlauf (Bild 5-1, Pos. B) demontiert und verwendet werden.

Dieser muss nach dem Entleervorgang zurückmontiert werden, bevor die Heizungsanlage wieder in Betrieb genommen wird.

Bild 5-1 Ablaufschlauch montieren

4	KFE-Befüllanschluss (Zube- hör KFE BA)	E F	Gewindestück Blindstopfen
В	Sicherheitsüberlauf	G	Anschlusswinkel
С	Schlauch-Anschlussstückfür Sicherheitsüberlauf	X	Ventileinsatz

Tab. 5-1 Legende zu Bild 5-1 bis Bild 5-3

- Ventileinsatz am Anschlusswinkel so einstellen, dass der Weg zum Blindstopfen abgesperrt ist (Bild 5-2).
- Geeignete Auffangwanne unterstellen und Blindstopfen vom Anschlusswinkel entfernen (Bild 5-2).

Bild 5-2 Ventileinsatz absperren, Blindstopfen vom Anschlusswinkel entfernen

 KFE-Befüllanschluss (KFE BA) in den Anschlusswinkel einstecken und mit Halteklammer sichern (Bild 5-3).

Bild 5-3 KFE-Befüllanschluss in Anschlusswinkel montieren

5 Inbetriebnahme und Außerbetriebnahme

- KFE-Hahn am KFE-Befüllanschluss (KFE BA) öffnen.
- Ventileinsatz am Anschlusswinkel so einstellen, dass der Weg zum Ablaufschlauch geöffnet wird (siehe auch Bild 5-2) und Wasserinhalt des Speicherbehälters ablassen.

5.2.2 Endgültige Stilllegung

- Daikin Solaranlage außer Betrieb nehmen (siehe Kapitel 5.2.1 "Vorübergehende Stilllegung").
- Regelungs- und Pumpeneinheit EKSRPS4A von allen elektrischen Anschlüssen und Wasseranschlüssen trennen.
- Regelungs- und Pumpeneinheit EKSRPS4A entsprechend der Montageanleitung (Kapitel 4 "Montage") in umgekehrter Reihenfolge demontieren.
- Regelungs- und Pumpeneinheit EKSRPS4A fachgerecht entsorgen.

Hinweise zur Entsorgung

Daikin hat durch den umweltfreundlichen Aufbau der Solaranlage die Voraussetzungen für eine umweltgerechte Entsorgung geschaffen. Bei der Entsorgung fallen nur Abfälle an, die entweder der stofflichen

Wiederverwertung oder der thermischen Verwertung zugeführt werden können.

Die verwendeten Materialien, die zur stofflichen Wiederverwertung geeignet sind, können sortenrein getrennt werden.

Die Kennzeichnung des Produktes bedeutet, dass elektrische und elektronische Produkte nicht mit unsortiertem Hausmüll entsorgt werden dürfen.

Die fachgerechte und den jeweiligen nationalen Bestimmungen des Einsatzlandes entsprechende Entsorgung liegt in der Verantwortung des Betreibers.

- Demontage des Systems, Handhabung von Kältemittel, Öl und weiteren Teilen darf nur von einem qualifizierten Monteur erfolgen.
- Entsorgung nur bei einer Einrichtung, die auf Wiederverwendung, Recycling und Wiederverwertung spezialisiert ist.

Weitere Informationen sind bei der Installationsfirma oder der zuständigen örtlichen Behörde erhältlich.

18

6 Regelung

6.1 Bedien- und Anzeigeelemente

- Hauptschalter mit Kontrollleuchte
 Display zur Temperatur- und Parameteranzeige (Energiesparfunktion: Displaybeleuchtung schaltet 10 min nach dem letzten Tastendruck ab)
- 3 Leuchte für Kollektortemperatur-Anzeige
- 4 Leuchte für Solar-Vorlauftemperatur und Durchflussmessung (FLS)
- 5 Leuchte für Speichertemperatur-Anzeige
- 6 Leuchte für Solar-Rücklauftemperatur- Anzeige

 Betriebszustands-Leuchte für drehzahlge 10

 regelte Solar Betriebspumpe P_S (leuchtet,

 wenn Pumpe in Betrieb - flackert, wenn

 Pumpe im gedrosselten Zustand läuft)

 Pfeiltaste nach oben zum Wechseln der

 Temperatur- oder Parameteranzeige in

- Pfeilrichtung bzw. zum Erhöhen des Parametersistellwertes
- Pfeiltaste nach unten zum Wechseln der Temperatur- oder Parameteranzeige in Pfeilrichtung bzw. zum Absenken von Parametereinstellwerten
- Info-Taste zum Einstieg in die Informationsebene (Anzeigen von Messwerten, Maximalwerten und Rechenwerten) und OK-Taste zum Bestätigen und Speichern von Einstellungen im Einstellmenü
- 11 Regelungsgehäuse
- 12 Verschlussschrauben für Gerätegehäuse (Rückseite)
- 13 Typenschild
- Gerät darf nur vom autorisierten Fachmann geöffnet werden. Vor dem Öffnen Netzstecker ziehen!

Bild 6-1 Bedien- und Anzeigeelemente

6.2 Funktionsweise der Regelung

Aufgrund ständiger Verbesserungen zum optimalen Einsatz der Solaranlage wurde die Solar R4-Regelung mit einer Updatefunktion ausgestattet. Daher sind einige, in diesem Kapitel beschriebenen Funktionen nur für bestimmte Softwareversionen gültig. Diese Funktionen sind gesondert durch Symbole gekennzeichnet.

7

8

9

Softwareupdates an der Solar R4-Regelung dürfen nur durch den Daikin Servicetechniker durchgeführt werden.

Der Netzschalter trennt die Solar R4-Regelung komplett von der Netzspannung. Das Schalten des Netzschalters erfordert einen stärkeren Tastendruck als das Bestätigen der Bedientasten.

6.2.1 Pumpenbetrieb

Die Solaranlage wird ganzjährig vollautomatisch betrieben, ohne dass manuelle Eingriffe erforderlich sind. Der drehzahlgeregelte Pumpenbetrieb wird von der Solar R4-Regelung gesteuert. Die Bedien- und Anzeigeelemente sind in Bild 6-1 dargestellt.

Kriterium für das Zuschalten:

 Pumpenbetrieb erfolgt in Abhängigkeit von der kontinuierlich gemessenen Temperaturdifferenz zwischen Kollektor (T_K)und Rücklauftemperatur (T_R) und Vergleich mit dem im Parameter [Delta T ein] eingestellten Wert.

Die Solar Betriebspumpe P_S schaltet ein, wenn die Temperaturdifferenz (= $T_K - T_R$) den im Parameter [Delta T ein] eingestellten Wert überschreitet (z. B. Rücklauftemperatur = 40 °C und [Delta T ein] = 15 K; Kollektortemperatur > 55 °C).

Kriterien für das Abschalten:

 Ein Abschalten der Solar Betriebspumpe P_S erfolgt bei Unterschreitung der Temperaturdifferenz des am Parameter [Delta T aus] eingestellten Wertes.

1. Möglichkeit: Normales Abschalten, wenn die "Befüllzeit" (Parameter [Zeit P2]) abgelaufen ist und die Temperaturdifferenz zwischen Vor- und Rücklauftemperatur die Ausschaltbedingung erreicht ($T_V - T_R <$ [Delta T aus]).

2. Möglichkeit: Schnelles Abschalten, wenn sich der Kollektor innerhalb der "Befüllzeit" (Parameter [Zeit P2]) zu schnell abkühlt ($T_K - T_R <$ [Delta T aus]).

6 Regelung

Bei aktivem Frostschutz ($T_K < 0$ °C innerhalb der letzten 24 h) erfolgt kein schnelles Abschalten. Die Solar Betriebspumpe P_S wird über einen längeren Zeitraum betrieben, damit sich die Verbindungsleitungen so stark aufwärmen, dass keine Eispfropfen entstehen können.

In diesem Fall muss jedoch eine deutlich höhere Kollektortemperatur erreicht werden, bevor die Solar Betriebspumpe P_{S} einschaltet.

- Erreichen der über Parameter [TS max] eingestellten maximalen Speichertemperatur (T_S-Leuchte blinkt). In diesem Fall ist ein erneutes Einschalten der Solar Betriebspumpe P_S nur möglich, wenn die Speichertemperatur um mehr als 2 K gesunken ist.
- Erreichen der über Parameter [TK zul] eingestellten, maximal zulässigen Kollektortemperatur (T_K-Leuchte blinkt). In diesem Fall ist ein erneutes Einschalten der Solar Betriebspumpe P_S nur möglich, wenn die Kollektortemperatur um mehr als 2 K unter Parameterwert [TK zul] gesunken ist.
- Defekter FlowSensor.

6.2.2 Booster-Funktion für hohe Kollektortemperaturen

Ab einer Kollektortemperatur von [TK max] wird die Leistung der Solar Betriebspumpe P_S mit max. Leistung betrieben.

Dadurch wird der Anlagendruck und gleichzeitig die Durchflussmenge erhöht, wodurch in kürzerer Zeit mehr Wärme eingespeichert werden kann.

Die Booster-Temperatur kann vom Heizungsfachmann mit dem Parameter [TK max] verändert werden. Diese Leistungserhöhung wird bei Unterschreitung der Booster-Temperatur um 5 K automatisch wieder abgeschaltet.

6.2.3 Startoptimierung

Die Startoptimierung verhindert ein zu häufiges Takten und reduziert die Leistungsaufnahme. Es handelt sich dabei um eine selbstlernende Funktion. Die Startoptimierung ist werkseitig aktiviert.

6.2.4 Einschaltsperre-Funktionen

Die Einschaltsperre-Funktionen verhindern:

- das Wiedereinschalten, wenn aufgrund des Erreichens der eingestellten maximalen Speichertemperatur [TS max] die Solaranlage automatisch abgeschaltet wurde (T_S-Leuchte blinkt).
- den Pumpenbetrieb bei aktiver "verschärfter Frostschutzfunktion" (Stern-Symbol im Display blinkt - siehe Abschnitt 6.2.11).
- den Pumpenbetrieb, wenn die Kollektortemperatur den vom Heizungsfachmann mit dem Parameter [TK zul] einstellbaren Wert überschreitet (T_K-Leuchte blinkt).

Nach dem Abschalten der Solar Betriebspumpe P_S aufgrund der maximalen Speichertemperatur können bei anhaltender Sonneneinstrahlung am Kollektor Temperaturen von über 100 °C auftreten. Sinkt die Speichertemperatur in dieser Betriebssituation (z. B. durch Warmwasserentnahme) unter die Freigabetemperatur ([TS max] – 2 K), wird die Solar Betriebspumpe P_S erst wieder eingeschaltet, wenn am Kollektor die mit Parameter [TK zul] eingestellte Wiedereinschaltschutztemperatur um 2 K unterschritten ist.

Die Funktion Sperrzeit bewirkt, dass die Solar Betriebspumpe P_S nach Eintritt einer Abschaltbedingung erst nach Ablauf der im Parameter [Zeit SP] eingestellten Sperrzeit (0 – 600 s) wieder freigeschaltet wird.

Dadurch:

- kann ein Takten der Solaranlage minimiert werden.
- kann der Kollektor eine höhere Temperatur erreichen.
- sinkt beim Befüllen der Solaranlage die Vorlauftemperatur nicht unter die Ausschaltbedingung und das System regelt sich schneller ein.

Wird die Solar Betriebspumpe P_S bei Kollektortemperaturen über 100 °C eingeschaltet (T_K zul > 100 °C), verdampft das Rücklaufwasser sofort, nachdem es in den Kollektor gelangt. Der Abbau der thermischen Überka-

pazität in den Kollektoren und die damit verbundenen, beim Verdampfen entstehenden Siedegeräusche, können einige Minuten dauern.

Der Dampf entweicht bei einer korrekt installierten Solaranlage drucklos in den Solarspeicher, wo er zum größten Teil wieder kondensiert. Auch ein leicht erhöhter Pufferwasserverbrauch, bedingt durch austretenden drucklosen Wasserdampf, ist ein normaler Betriebszustand.

6.2.5 Pumpenkick-Funktion

Während längerer Stillstandszeiten wird die Solar Betriebspumpe P_S alle 24 Stunden für wenige Sekunden aktiviert.

Dadurch wird ein Festsetzen der Solar Betriebspumpe verhindert.

6.2.6 Handbetrieb

Ausschließlich zur Inbetriebnahme und zu Testzwecken kann die Anlage manuell für die im Parameter [H/A] hinterlegte Zeit eingeschaltet werden. Dabei sind sämtliche Regelfunktionen abgeschaltet und die Solar Betriebspumpe P_S läuft ständig unabhängig von den Systemtemperaturen auf der eingestellten Leistungsstufe.

• Gleichzeitiger Druck (> 1 s) auf beide Pfeiltasten aktiviert bzw. deaktiviert den Handbetrieb.

VORSICHT!

Ein unkontrollierter Handbetrieb kann zu Wärmeverlusten, übermäßig hohen Speichertemperaturen und in gewissen Kältesituationen sogar zu Frostschäden führen.

> Bei aktiver "verschärfter Frostschutzfunktion" (Stern-Symbol im Display blinkt - siehe Abschnitt 6.2.10) kann der Handbetrieb nicht aktiviert werden.

6.2.7 FlowSensor

Der FlowSensor (FLS) dient der Messung von Durchfluss "V" und Vorlauftemperatur "T $_{\rm V}$ ".

- Bei angeschlossenem und aktiviertem Sensor:
- werden die Messwerte "V" und "T_V" angezeigt.
- arbeitet die Regelung nach dem Befüllvorgang mit der realen Spreizung T_V - T_R.

Hat das System den FlowSensor einmal erkannt, erscheint bei einem fehlerhaften oder abgezogenen Sensor im Display eine Fehlermeldung (siehe Kapitel 7.1 "Ereignisanzeige"). Die Anlage arbeitet jetzt im Notbetrieb ohne FlowSensor.

Erkennt die Regelung nach einer Neuinstallation bzw. einem Fachmann-Reset einen FlowSensor, wird automatisch der Wert "20" im Parameter [FLS aktiv] gesetzt.

Es muss grundsätzlich der korrekte Parameterwert für den in die Anlage eingebauten FlowSensor überprüft und ggf. eingestellt werden (siehe Tab. 6-1). Durch Eingabe des Parameterwertes "0" kann der FlowSensor deaktiviert werden.

Wird der FlowSensor vom Heizungsfachmann deaktiviert, erscheint keine Fehlermeldung. Die Regelung arbeitet jetzt ohne den Messwert für den Durchfluss. Die Vorlauftemperatur " T_V " wird dabei gleich der Kollektortemperatur " T_K " gesetzt.

FlowSensor Typ	Parameterwert [FLS aktiv]	Minimaldurchfluss Startphase "V1" in I/min	Minimaldurchfluss Betriebsphase "V2" in I/min		
Beliebig	0	FLS deaktiviert - keine Durchflussmenge			
FLS 12 (auf Anfrage)	12	1,5	1,0		
FLS 20 (im Lieferumfang enthalten)	20*	2,0	1,5		
FLS 100 (auf Anfrage)	100	10,0	5,5		

Tab. 6-1 Übersicht FlowSensoren

*automatisch gesetzter Wert bei erkanntem FlowSensor

6.2.8 Leistungsberechnung, Maximalwerte und Ertragszählung

Die Bilanzierung und Berechnung der Anlagen-Betriebsdaten (z. B. solarer Wärmeertrag) ersetzt keinen geeichten Wärmemengenzähler. Diese Werte dürfen nicht zur Heizkostenverteilung oder ähnlichen juristisch belastbaren Bilanzierungen herangezogen werden.

Bei angeschlossenem FlowSensor erfolgt eine Berechnung und Bilanzierung der Anlagen-Betriebsdaten, wie z B. die aktuelle Wärmeleistung und der solare Wärmeertrag. Die Maximal- und Rechenwerte können am Display abgefragt werden (siehe Kap. 6.3). Werte größer "0" die nicht gelöscht wurden, werden auch nach Abziehen oder Deaktivierung des FlowSensors (ohne weitere Aktualisierung) weiterhin angezeigt.

Regelung 6

6.2.9 Drehzahlregelung der Solar Betriebspumpe P_S

Nach Erreichen der Einschaltbedingungen veranlasst die Solar R4-Regelung:

- die Ansteuerung der Solar Betriebspumpe PS mit voller Leistung zur Befüllung der Solaranlage. Diese erfolgt in Abhängigkeit des eingestellten Parameterwerts [Zeit P2] in [s].
 - Misst der korrekt eingestellte FlowSensor vor Ablauf dieser Zeit einen stabilen Durchfluss, ist die Solaranlage komplett mit Wasser befüllt.
- die Ansteuerung der Solar Betriebspumpe PS mit voller Leistung bis zum möglichen Maximaldurchfluss der Anlage.
- die stufenlose Leistungsreduzierung der Solar Betriebspumpe P_S, bis die errechnete Sollspreizung "DT" den Sollwert entsprechend Bild 6-2 einhält, oder bis der Minimaldurchfluss "V2" (Bild 6-3 und Tab. 6-1) unterschritten wird.
- die stufenlose Leistungserhöhung der Solar Betriebspumpe P_S nach einer Sicherheitszeit "t₂" (Bild 6-3).

Ist die Pumpenleistung zu gering, kann anlagen- bzw. temperaturbedingt die Strömung im Solarkreislauf abreißen. Fällt der Durchfluss für mindestens 10 s unter den Wert "V2" (Bild 6-3 und Tab. 6-1), erkennt die Regelung einen Durchflussabriss, die letzte gültige Leistungsstufe wird als Pumpenmindestleistung abgespeichert. Niedrigere Pumpenleistungsstufen werden automatisch gesperrt.

Die temperaturabhängige Leistungsregelung der Solar Betriebspumpe PS erfolgt anschließend zwischen der ermittelten Mindest- und der Maximalleistung. Die Spreizung von "Tv" und "T_R" (= $T_V - T_R$) wird kontinuierlich gemessen und mit der Sollspreizung "DT" verglichen. Ist die Temperaturspreizung zwischen "T_V" und "T_R" zu groß, wird die Pumpenleistung (max. 15 Stufen) und damit der Durchfluss durch das Kollektorfeld so lange erhöht, bis die Sollspreizung erreicht ist. Ist die Spreizung zu klein, wird die Pumpenleistung reduziert (Bild 6-2). Die aktuelle Pumpenleistung wird während ihrer aktiven Laufzeit in der Betriebsanzeige [Durchfluss] neben dem Durchfluss-Messwert prozentual angezeigt. Einen typischen Betriebsverlauf einer modulierenden Solaranlage zeigt Bild 6-3.

- DT Sollspreizung (für den Betriebspunkt errechnet)
- Solar Betriebspumpe Ps
- S1 Obere Sollspreizung ([Spreizung 1])
- Untere Sollspreizung ([Spreizung 2]) S2
- T_K Kollektortemperatur
- T1 Frostschutztemperatur ([T frost])
- T2 Booster-Temperatur ([TK max])
- Wiedereinschaltschutztemperatur ([TK zul]) **T**3 Sollspreizuna
- Schaltgrenzen für Pumpenmodulation
- Pumpenleistung wird erhöht
- Pumpenleistung wird reduziert

Bild 6-2 Temperaturdifferenzabhängige Pumpenleistungsregelung

- Wird die Regelung aus- und wieder eingeschaltet:
- werden automatisch gesperrte Pumpenstufen wieder freigegeben.
- wird die Anlage automatisch neu eingeregelt.
- bleiben manuell gesperrte Pumpenstufen (siehe Kapitel 6.3.8) weiterhin gesperrt.

- Α Startphase
- В Betriebsphase (Modulation)
- С Strömungsabriss
- D Niedrige Pumpenleistungsstufen werden nach Strömungsabriss automatisch gesperrt
- Ps Solar Betriebspumpe
- Zeit f
- Mindestlaufzeit der Solar Betriebspumpe PS mit maximaler Leist₁ tung ([Zeit P2])
- Stabilisierungszeit t_2
- t₃ V Abrisserkennungszeit (10 s)
- Durchfluss im Solarkreis
- V1 Minimaldurchfluss in der Startphase V2 Minimaldurchfluss in der Betriebsphase
- Bild 6-3 Bsp. für Modulationsbetrieb mit abrissbedingter Sperrung niedriger Pumpenstufen an Anlagen mit FlowSensor

6.2.10 Gesamt-Reset-Funktion

Durch einen Gesamt-Reset gehen sämtliche individuellen Einstellungen verloren und der Ereignisspeicher wird gelöscht. Alle berechneten Größen (Info-Parameter) werden auf Null gesetzt.

Wenn die Gesamt-Reset-Funktion über den Menüpfad ausgelöst wird, bleibt der Gesamt-Wärmeertrag erhalten. Mit dem Schnellzugriff über die Tastenkombination wird auch dieser Wert gelöscht.

Das Gerät reagiert auf Gesamt-Reset mit einem Neustart (Selbsttest), alle Parameter werden auf die Werkseinstellung zurückgesetzt und dann alle gesperrten Pumpenleistungsstufen freigegeben. Der Reset erfolgt:

- Über Menüpfad: Aktivierung durch den Heizungsfachmann im Einstellmenü [System].
- Durch Schnellzugriff: Gleichzeitiger Druck auf die OK- und auf die Pfeiltasten.

6.2.11 Frostschutz-Funktion

Sobald die Kollektortemperatur "T_K" unter [T frost] (werkseitig definierte Frostschutztemperatur) fällt, wird die Frostschutzfunktion aktiviert. Sie bleibt nach Überschreiten dieser Grenztemperatur noch für die folgenden 24 h bestehen.

Bei aktivem Frostschutz wird in der Standard-Temperaturanzeige im Display ein Sternsymbol angezeigt.

Bild 6-4 Betriebsanzeige bei aktivem Frostschutz

Die Solaranlage geht bei aktivem Frostschutz erst in Betrieb, wenn die Einschaltbedingung erfüllt ist und die Kollektortemperatur "T_K" den Wert von "T_K save" (Werkseinstellung 70 °C) überschreitet. Die Solar Betriebspumpe P_S wird nach dem Einschalten mindestens für die im Parameter [Zeit P2] definierte Zeit betrieben, auch wenn die Ausschalt-Temperaturbedingung bereits vorher eintritt.

Bei Bedarf (z. B. bei langen Strecken der Verbindungsleitung im Außenbereich) kann diese Mindest-Startlaufzeit vom Heizungsfachmann um eine einstellbare Zeit ([Zeit frost]) verlängert werden. Dies verhindert Eispfropfenbildung in der Verbindungsleitung.

Am Status der Frostschutzfunktion [FR aktiv] ist zu erkennen, ob die Funktion aktiviert oder deaktiviert ist (Bild 6-7). Der Heizungsfachmann kann die Funktion manuell ein- oder ausschalten.

Die Position des Kollektortemperaturfühlers ist im Parameter [TKpos] einstellbar.

Zur Optimierung des Frostschutzes sollen die Kollektoren mit der Fühlerposition "Unten" eingebaut werden.

Der Parameter [TKpos] muss auf die tatsächliche Einbauposition des Kollektortemperaturfühlers eingestellt werden (siehe Abschnitt 6.3.7).

Verschärfte Frostschutzfunktion

Sobald die Solar R4-Regelung eine Kollektortemperatur "T_K" unter -5 °C (nicht veränderbarer Parameter [T frost off]) erfasst, wird die verschärfte Frostschutzfunktion aktiv. Damit wird der Pumpenbetrieb komplett gesperrt - auch im Handbetrieb.

Die Funktion bleibt nach Überschreiten dieser Grenztemperatur noch 24 h aktiv.

Die verschärfte Frostschutzfunktion wird durch ein blinkendes Sternsymbol im Display der Solar R4-Regelung angezeigt. **Die Funktion kann nicht manuell ausgeschaltet werden.**

6.2.12 Anlagenleckschutz-Funktion

Wird nach dem Einschalten der Solar Betriebspumpe P_S und Ablauf der Befüllzeit [Zeit P2] kein Minimaldurchfluss "V1" entsprechend Tab. 6-1 am FlowSensor festgestellt, kann:

- ein Defekt des FlowSensors oder
- ein Leck in der Solaranlage vorliegen.

Damit bei einem Leck nicht das gesamte Pufferwasser aus dem System gepumpt wird, wird die Solar Betriebspumpe P_S für 2 Stunden abgeschaltet und die Fehlermeldung "W" erscheint blinkend in der linken Spalte des Displays.

Tritt dieser Fehler 3x hintereinander auf, ohne dass der Minimaldurchfluss "V1" dazwischen erreicht wurde, schaltet sich die Solar Betriebspumpe P_S dauerhaft ab und die Fehlermeldung "F" erscheint in der linken Spalte des Displays.

- Defekten Sensor tauschen bzw. Leck schließen.
- Fehlermeldung durch "AUS-/EIN-Schalten" am Hauptschalter löschen.
 - → Die Anlage ist wieder betriebsbereit.

6.3 Einstellung und Menüführung

Die Tab. 6-2 gibt eine Übersicht über die verfügbaren Messstellen und die zugehörigen Anzeigeformate. In der Tab. 6-3 sind die Darstellungen der berechneten Parameter zusammengefasst.

Messstelle	Bezeichnung Anzeige	Messbereich	Auflösung	Sensor
Τ _K	Kollektortemperatur	-30 bis 250 °C	1 K	Pt 1000-Temperaturfühler
T _R	Rücklauftemperatur	0 bis 100 °C	1 K	PTC-Temperaturfühler
Τ _S	Speichertemperatur	0 bis 100 °C	1 K	PTC-Temperaturfühler
T _V	Vorlauftemperatur	0 bis 100 °C	1 К	FlowSensor (alle Typen) mit Spannungsausgang 0,5 bis 3,5 V
	Durchfluss	0,0 bis 12,0 l/min		FlowSensor FLS 12 mit Spannungsausgang 0,36 bis 3,5 V
V		0,0 bis 20,0 l/min	0,1 l/min	FlowSensor FLS 20 mit Spannungsausgang 0,36 bis 3,5 V
		0,0 bis 100,0 l/min		FlowSensor FLS 100 mit Spannungsausgang 0,36 bis 3,5 V

Tab. 6-2 Messstellen Übersicht

6 Regelung

Parameter	Bezeichnung	Wertebereich	Auflösung	Bemerkung	
TK max	Maximale aufgetretene Kollek- tortemperatur	-30 bis 250 °C	1 K	-	
TK min	Minimal aufgetretene Kollektor- temperatur	-30 bis 250 °C	1 K	-	
		0,0 bis 12,0 l/min			
V/max	Maximaldurabfluss	0,0 bis 20,0 l/min	0.1.1/min	Maximaldurchfluss, der beim Befüllen erreicht	
v max		0,0 bis 40,0 l/min	0,1 ///////	wurde	
		0,0 bis 100,0 l/min			
PS	Spitzenleistung	0,0 bis 99,9 kW	0,1 kW	Maximalwert aus 5 min Leistungsmittelwert	
PS(15h)	Tages-Spitzenleistung	0,0 bis 99,9 kW	0,1 kW	Maximalwert der Spitzenleistung innerhalb der letzten 15 h	
W(15h)	Tages-Wärmeertrag	0,0 bis 999,9 kWh	0,1 kWh	Aus Momentanleistung ermittelter Wärmeer- trag innerhalb der letzten 15 h	
w	Gesamt-Wärmeertrag	0,0 bis 9999,9 kWh oder 10,000 bis 99,999 MWh	0,1 kWh 0,001 MWh	Aus Momentanleistung ermittelter gesamter Solar-Wärmeertrag	
Р	Momentanleistung	0,0 bis 99,9 kW	0,1 kW	Mittelwert der letzten Minute	
DT	Sollspreizung	1 bis 23 K	1 K	Soll-Temperaturdifferenz $T_V - T_R$ bei Modulationsbetrieb (errechnet)	
P1	Leistungsstufe im Normalbe- trieb	0 bis 100 %	1 %	-	
Stufe min	Kleinste freigegebene Leis- tungsstufe P1	1 bis 10; 0 bis 100 %	1; 1 %	Nur mit Fachmannzugang verfügbar (siehe Bild 6-7)	
Stufe ein	Laufzeit der Solar Betriebs- pumpe P _S	0 bis 99999 h	1 h	Nur mit Fachmannzugang verfügbar (siehe Bild 6-7)	

Tab. 6-3 Info-Parameter (Maximalwerte und Rechenwerte)

6.3.1 Startanzeige

Nach Einschalten durchläuft die Solar R4-Regelung einen Selbsttest, bei dem die Anzeigeelemente gezielt angesteuert und die Einstellparameter der Benutzerebene angezeigt werden. Folgende Testschritte werden durchlaufen und jeweils ca. 2 s angezeigt (Bild 6-5):

- Unmittelbar nach dem Einschalten erscheint die Startanzeige, aus dem die installierte Softwareversion und die Seriennummer des Geräts hervorgehen.
- Bei der Erstinbetriebnahme wird anschließend die gewünschte Anzeigensprache abgefragt.
- Danach werden die aktuellen Parametereinstellungen angezeigt, die vom Benutzer verändert werden können.
- Wenn die Betriebsanzeige erscheint, ist der Selbsttest abgeschlossen.
- Die Funktionen der Solar Betriebspumpe P_S und deren Betriebszustandsleuchten können aus Sicherheitsgründen nur manuell geprüft werden (siehe Abschnitt 6.2.6).

6.3.2 Betriebsanzeige

In der Betriebsanzeige werden Systemtemperaturen, Maximalund Rechenwerte angezeigt. Nach der Startanzeige befindet sich die Solar R4-Regelung automatisch im Betriebsanzeigemodus, ein Betriebswert wird angezeigt und die dazugehörige Leuchte leuchtet.

- Drücken der Pfeiltasten lässt zwischen den vier Temperaturmesswerten und dem Durchflussmesswert (siehe Tab. 6-2 sowie Tab. 6-6) navigieren.
- Drücken der Info-Taste zeigt die Maximal- und die Rechenwerte (siehe Tab. 6-3) an.

Die linke Spalte des Displays dient als Statusanzeige. Es bedeutet:

- "1" in erster Zeile, Solar Betriebspumpe P_S Normalbetrieb aktiv.
- "2" in der 2. Zeile, Solar Betriebspumpe P_S mit maximaler Leistung (Booster) aktiv.
- "B" in der 3. Zeile, Brennersperrkontakt aktiv (siehe Abschnitt 6.3.10) oder einen Fehlerstatus (siehe Kapitel 7.2 "Störungsbehebung").
- "H" in der 4. Zeile, Handbetrieb aktiv.

Solange keine manuelle Verstellung vorgenommen wird oder ein Ereignis entsprechend Tab. 7-2 eine andere Anzeigenform hervorruft, bleibt die angesteuerte Messwert- oder Info-Anzeige aktiv. Sie wird auch nach Parameteränderungen oder "AUS-/EIN-Schalten" wieder aktiviert. Werden Info-Parameter angezeigt, ist keine Messstellen-Kontrollleuchte aktiviert.

Bild 6-6 Betriebsanzeige

6.3.3 Einstellmenü

Im Menü werden die Parameter der Solar R4-Regelung angezeigt und geändert.

- Durch einmaligen Druck (>2 s) der OK-Taste gelangt man in das Menü oder wieder zurück in die Betriebsanzeige. Kurzzeitiges Drücken bestätigt eine Auswahl, öffnet die nächste Menüanzeige oder es erscheint ca. 1 s [Gespeichert] für einen geänderten Wert.
- In der gewünschten Parameteranzeige gelangt man durch Drücken der OK-Taste in den Parameteränderungsmodus.

Im Menü (Bild 6-7) wird in der ersten Zeile der aktive Menüpfad angezeigt, in der linken Spalte zeigt ein Cursor (">") auf den darunter liegenden Menüpfad oder einen Parameter. Von dort aus navigiert man im jeweiligen Menübaum mit den Pfeiltasten nach oben (+ Taste) oder unten (– Taste).

Der eingestellte Wert kann entsprechend der Pfeiltasten verändert werden. Ein kurzer Druck auf die Pfeiltaste verändert den Wert um einen Verstellschritt, anhaltender Druck beschleunigt die Änderung.

Wurde der gewünschte Parameter geändert und die gesamte Parameterliste nach unten durchgeblättert, gelangt man wieder zurück in das Auswahlmenü [Auswahl 2/2] und von dort in die Betriebsanzeige (siehe Bild 6-7). Die Regelung arbeitet sofort mit den geänderten Parameterwerten. Grundsätzlich springt die Regelung in den Betriebsanzeigemodus zurück, wenn etwa 10 min lang keine Taste betätigt wird.

6 Regelung

Bild 6-7 Einstellmenü

6.3.4 Passworteingabe

Der Fachmannbereich des Einstellmenüs ist durch ein Passwort geschützt, welches am Anfang des Einstellmenüs eingegeben wird. Auch der Benutzerbereich kann geschützt werden. Die Ebene Benutzer und die Ebene Fachmann sind im Bild 6-7 farblich unterschiedlich dargestellt.

Alternativer Schnelleinstieg in das Einstellmenü: Nach Einschalten der Regelung, während der Startanzeige, ein langer Tastendruck der Pfeiltaste nach oben (+).

Solange das Gerät manuell bedient wird, ist keine weitere Passworteingabe erforderlich. Die Gültigkeit eines Passwortes läuft ca. 10 min nach dem letzten Tastendruck ab. Für die gewünschte Ebene erfolgt nach Passworteingabe für 2 s:

- [Benutzer OK],
- [Fachmann OK] bzw.,
- [Passwort FALSCH].

Benutzer-Passwort

Dieses Passwort ist in der Werkseinstellung der Solar R4-Regelung nicht aktiviert. Durch Eingabe eines 4-stelligen numerischen Codes werden alle in der Benutzerebene einstellbaren Parameter vor unberechtigtem Zugriff geschützt (Kindersicherung oder Hausmeisterfunktion). Die Parameter der Benutzerebene können grundsätzlich nur bei deaktiviertem bzw. gültigem Benutzer-Passwort geändert werden.

Die Aktivierung und Änderung bzw. Neuvergabe des Benutzer-Passwortes erfolgt im Menüpfad: [Auswahl 1/2] -> [Funktionen] -> [Passwort ändern] (siehe Bild 6-7):

- Altes Passwort im Datenfeld [aktuell 0000] und neues im Datenfeld [neues 0000] eingegeben. Dabei jede Ziffer des Passworts mit der OK-Taste bestätigen.
- Bei Neuvergabe das neue Passwort sowohl im Datenfeld [aktuell 0000] als auch im Datenfeld [neues 0000] eingegeben.

Ist das Benutzer-Passwort aktiviert, erscheint im Menüpfad: [Auswahl 1/2] nur [Passwort 0000]. Das Benutzer-Passwort wird erst nach 10 min oder nach einem Wiedereinschalten der Solar R4-Regelung aktiv.

Fachmann-Passwort

Das Passwort wird im Menüpfad: [Auswahl 1/2] unter [Passwort 0000] eingegeben. Es schaltet alle für den Fachmann wichtigen Anlagenparameter im Einstellmenü frei (siehe Bild 6-7).

6.3.5 Sprachwahl

Bei Erstinbetriebnahme oder nach einem Gesamt-Reset wird während des Starts die Anzeige (Bild 6-5) angehalten und eine Sprachwahl abgefragt.

 Über die Pfeiltasten eine Sprache auswählen und mit der OK-Taste bestätigen.

Im Einstellmenü kann im Menüpfad: [Auswahl 1/2] -> [Funktionen] -> [Sprache ändern] nachträglich eine andere Sprache ausgewählt werden (Bild 6-7).

Alternativer Schnelleinstieg zur Sprachwahl:

Gleichzeitiges Drücken der OK-Taste und der Pfeiltaste nach oben (+).

6.3.6 Parameter einstellen und zurücksetzen

Die Einstellung der Parameter erfolgt nach Bild 6-7. Alle einstellbaren Parameter sind mit Zugriffsebene, Verstellbereich und Werkseinstellung in Tab. 6-5 dargestellt. Im Menüpfad: [Auswahl 1/2] -> [Parameterauswahl] -> [rücksetzen] können die Maximalwerte und Rechenwerte (siehe Tab. 6-5) zurückgesetzt werden. Dabei wird mit der OK-Taste der angewählte Maximalwert sofort auf Null gesetzt. Die Pfeiltaste nach unten macht diese Handlung rückgängig, der Cursor geht zurück nach links. Mit der OK-Taste wird die Auswahl bestätigt. Durch wiederholtes Drücken der Pfeiltaste nach unten gelangt man in das Feld [Auswahl 2/2]. Bestätigen von [zurück] navigiert in die Betriebsanzeige.

Über den Menüpfad: [Auswahl 2/2] -> [System] -> [rücksetzen] kann die Gesamt-Reset-Funktion ausgelöst werden. Das System wird danach neu gestartet (siehe auch Abschnitt 6.2.10).

Durch einen Gesamt-Reset gehen sämtliche individuellen Einstellungen verloren und der Ereignisspeicher wird gelöscht. Alle berechneten Größen (Info-Parameter) werden auf Null gesetzt.

Wenn die Gesamt-Reset-Funktion über den Menüpfad ausgelöst wird, bleibt der Gesamt-Wärmeertrag erhalten. Mit dem Schnellzugriff über die Tastenkombination wird auch dieser Wert gelöscht.

6.3.7 Einstellung der Einbauposition des Kollektortemperaturfühlers

Nur wenn der Kollektortemperaturfühler bei bestehenden Solaranlagen oben montiert wurde, muss die Werkseinstellung "↓" des Parameters [TKpos] geändert werden.

Bild 6-8 Einstellung Parameter [TKpos] bei Einbauposition Kollektorfühler "Oben"

6 Regelung

6.3.8 Manuelle Einstellung der Pumpendrehzahlregelung

Bei einzelnen Leistungsstufen der drehzahlgeregelten Solar Betriebspumpe P_S kann es gelegentlich zu Geräuschproblemen kommen. Die aktuelle Leistung der ausgewählten Stufe wird in der untersten Zeile [Durchfluss] in der Betriebsanzeige (siehe Bild 6-6) prozentual angezeigt.

- Die Leistung der problematischen Stufe notieren.
- Über den Menüpfad: [Auswahl 2/2] -> [System] -> [Modulation] zu [Stufe] (siehe Bild 6-7) navigieren.

Hier können bis zu 10 Drehzahlstufen deaktiviert werden. Neben der Ordnungszahl der Leistungsstufe (beginnend mit 01 für die niedrigste Leistung) und dem Aktivitätsstatus wird hier unter [Leistung] die prozentuale Leistung der jeweiligen Stufe angezeigt.

- Geräuschintensive Stufe unter dem Parameter [aktiv] auf [nein] setzen.
 - ➔ Die Stufe wird bei der Ansteuerung der Solar Betriebspumpe P_S übersprungen. Die Sperrung bleibt auch nach dem "AUS-/EIN-Schalten" der Regelung erhalten. Sie kann durch Setzen des Parameters [aktiv] auf [ja] oder durch die Gesamt-Reset-Funktion wieder aufgehoben werden.

6.3.9 Korrekturwerte für Messstellen

Diese Einstellungen sind nur nach Eingabe des Fachmann-Passworts zugänglich.

Weicht der Messwert eines Fühlers vom realen Wert ab, kann er über einen Korrekturwert ausgeglichen werden.

 Über den Menüpfad: [Auswahl 2/2] -> [System] -> [Korrekturwerte] den Korrekturparameter (siehe Bild 6-7) anwählen und Werte entsprechend Tab. 6-4 verändern.

Bezeichnung/ [Anzeige]	Mess-/Einstell-/ Wertebereich	Werks- wert	Schritt- weite
Kollektortemperatur/ [Kollektor]	-9 bis +9	0 K	1 K
Rücklauftemperatur/ [Rücklauf]	-9 bis +9	0 K	1 K
Speichertemperatur/ [Speicher]	-9 bis +9	0 K	1 K
Vorlauftemperatur/ [Vorlauf]	-9 bis +9	0 K	1 K
Durchfluss/ [Durchfl.]	-2 bis +2	0 l/min	0,1 l/min

Tab. 6-4 Korrekturwerte für gemessene Daten

6.3.10 Brennersperrkontakt

Dieser Kontakt steuert einen externen Wärmeerzeuger so, dass der Speicher unter günstigen Witterungsvoraussetzungen nicht durch den externen Wärmeerzeuger aufgeheizt wird. Dazu wird das als Zubehör angebotene Anschlusskabel BSKK benötigt. Erreicht die Solaranlage eine vom Heizungsfachmann einstellbare Momentanleistung (Menüpfad: [Auswahl 1/2] -> [Parameterauswahl] -> [P min]) oder ist der Speicher auf eine vom Heizungsfachmann einstellbare Mindest-Speichertemperatur (Betriebsparameter [TS min] siehe Tab. 6-5) aufgeheizt, wird über einen Kontakt z. B. der Brenner stromlos geschaltet. Die Parametereinstellung für den Brennersperrkontakt ist in Bild 6-7 beschrieben.

Durch den Parameter [Zeit VBSK] ist es möglich, eine Verzögerung des Schaltzeitpunktes für den Brennersperrkontakt einzustellen. Der Brennersperrkontakt schaltet erst nach Ablauf der eingestellten Verzögerungszeit bei Überschreiten der Mindest-Speichertemperatur [TS min] oder bei Überschreiten der eingestellten Mindest-Momentanleistung für Brennerstop [P min] (Beispiel siehe Bild 6-9).

Im nachfolgenden Beispiel (Bild 6-9) ist ein fiktiver Verlauf der Speichertemperatur dargestellt.

Zum Zeitpunkt "t₁" wird die im Betriebsparameter [TS min] definierte Mindesttemperatur für den Brennerstopp erstmals überschritten. Da die Speichertemperatur "T_S" kurz darauf noch einmal unter diesen Wert fällt, führt dies nicht zur Aktivierung des Brennersperrkontakts.

Nachdem die Speichertemperatur " T_S " zum Zeitpunkt " t_2 " dauerhaft überschritten wird, führt dies mit der Verzögerung "VBSK" zum Zeitpunkt " t_3 ", zur Aktivierung des Brennersperrkontakts. Analog dazu wird der Brennersperrkontakt erst zum Zeitpunkt " t_6 " deaktiviert.

Bild 6-9 Beispiel: Funktion der Verzögerungszeit beim Auslösen des Brennersperrkontaktes

6.4 Einstellempfehlungen

6.4.1 Standard-Parametereinstellungen, empfohlene Einstellbereiche

Die nachfolgende Tabelle fasst die Werkseinstellungen sowie die möglichen und die empfohlenen Einstellbereiche der Systemparameter für die Solar R4-Regelung zusammen.

Parameter	Bezeichnung	Zugriffs- ebene	Einstell- bereich	Empfohlener Einstell- bereich	Werksein- stellung	Schritt- weite
TKpos	Kollektor	Fachmann	↑↓	Reale Einbauposition	Ļ	_
Delta T ein	Einschalttemperaturdifferenz		380 (>"Delta aus")	10 bis 15 K	15 K	15 K
Delta T aus	Ausschalttemperaturdifferenz	Benutzer	114 (<"Delta ein")	2 bis 5 K	2 K	1 K
TS max	Maximale Speichertemperatur		20 bis 85 °C	75 bis 85 °C	80 °C	1 K
Zeit P2	Mindestlaufzeit der Solar Betriebs- pumpe P _S mit maximaler Leistung	•	10 bis 999 s	Füllzeit +20 s	150 s	1 s
AUTORESET %P	Freigabe gesperrter Pumpenstufen alle 24 h		ja/nein		nein	_
				FLS 12: 12		0 12 20
FLS aktiv	FlowSensor-Aktivierung		0 bis 100	FLS 20: 20	Mit FLS: 20	10, 12, 20,
				FLS 100: 100		
FR aktiv	Status Frostschutzfunktion		ja/nein		nein	_
H/A	Automatische Rückschaltung von Hand- in Automatikbetrieb	-	1 bis 900 min	_	30 min	1 min
P min	Mindest-Momentanleistung für Brenner- stop		0,0 bis 99,9 kW	_	99,9 kW	0,1 kW
T frost	Grenz-Kollektortemperatur zur Aktivie- rung der Frostschutzfunktion		0 bis 10 °C	_	0 °C	1 K
T frost off	Grenztemperatur zur Aktivierung der verschärften Frostschutzfunktion für Kollektoren	nner	-5	_	-5 °C	_
TK max	Booster-Temperatur (maximale Kollektortemperatur)	Fachm	20 bis 110 °C	_	75 °C	1 K
TK save	Mindest-Kollektortemperatur zur Frei- gabe des Pumpenbetriebs bei aktiver Frostschutzfunktion		50 bis 150 °C	_	70 °C	1 K
TK zul	Wiedereinschaltschutztemperatur (max.zulässige Betriebskollektortemp.)		90 bis 250 °C	_	95 °C	1 K
TR min	Mindest-Rücklauftemperatur		10 bis 60 °C		25 °C	1 K
TS min	Mindestspeichertemperatur für Bren- nerstop		0 bis 99 °C		99 °C	1 K
Zeit frost	Zusätzliche Startlaufzeit der Solar Betriebspumpe P _S bei aktiver Frost- schutzfunktion		0 bis 600 s	_	0 s	1 s
Zeit SP	Sperrzeit Solar Betriebspumpe P _S		0 bis 600 s	—	30 s	10 s
Zeit VBSK	Verzögerung Brennersperrkontakt		10 bis 600 s	_	120 s	10 s

Tab. 6-5 Parameter-Übersicht

Die Systemparameter müssen bei Inbetriebnahme individuell auf die installierte Anlagensituation eingestellt und ggf. später im Betrieb optimiert werden. In der Regel funktioniert die Anlage bereits mit den Werkseinstellungen. Die folgenden Hinweise helfen beim Ermitteln der Einstellwerte und garantieren einen optimalen Wärmeertrag bei niedrigem Stromverbrauch:

• Die Einschalt-Temperaturdifferenz [Delta T ein] so einstellen, dass bei gleich bleibenden Einstrahlungsverhältnissen die Anlage nach dem Einschalten in Betrieb bleibt und nicht

Regelung

durch die Abkühlung des Kollektors bei Wärmeentnahme sofort wieder abschaltet. Je niedriger der Wert gewählt werden kann, desto länger werden die Betriebszeiten und desto größer die erzielbaren Wärmegewinne. Bei zu niedrig eingestellter Einschalt-Temperaturdifferenz kühlt sich der Kollektor bereits beim Befüllen so weit ab, dass die Abschalt-Temperaturdifferenz unterschritten wird.

- → Die Pumpen schalten gleich wieder ab, geringer Wärmegewinn bei hohem Stromverbrauch ist die Folge.
- Die Abschalt-Temperaturdifferenz [Delta T aus] so einstellen, dass die im Abschaltpunkt gewinnbare Wärmeleistung höher ist als die zum Pumpenantrieb benötigte elektrische Leistung.
 - \rightarrow Da der Stromverbrauch der Solar Betriebspumpe P_S nahezu unabhängig von der Größe des angeschlossenen Kollektorfelds ist, die gewinnbare Wärmeleistung aber direkt von der Kollektoranzahl abhängt, wird der Parameterwert bei wenigen Kollektoren höher, bei mehreren Kollektoren niedriger eingestellt.
- Die Laufzeit [Zeit P2] für die maximale Leistung der Solar Betriebspumpe P_S so einstellen, dass in jedem Betriebsfall der gesamte Querschnitt der Vorlaufleitung wassergefüllt ist. Die benötigte Zeit über die Dauer der Wahrnehmung von Luftgeräuschen vom Einschalten der Solar Betriebspumpe Ps bis am Vorlaufeintritt in den Speicher ermitteln und zu der gemessenen Zeit einen Sicherheitszuschlag von 20 s addieren. Die Fülldauer ist abhängig von der eingestellten Durchflussmenge, der Kollektoranzahl, der Anlagenhöhe und der Länge der Verbindungsleitung.
- Die maximale Speichertemperatur [TS max] wird den individuellen Bedürfnissen entsprechend eingestellt. Je höher der Parameterwert, desto höher ist die verfügbare Wärmespeicherkapazität und damit das Leistungspotenzial der Daikin Solaranlage.

WARNUNG!

- Im Solarspeicher können Temperaturen über 60 °C auftreten.
- Verbrühschutz einbauen.
 - Verbrühschutz VTA32
 - Verschraubungs-Set 1"

Ein Einschaltvorgang mit Dampfbildung in den Kollektoren führt häufig zur Verunsicherung des Betreibers. Um Siedegeräusche und Dampfaustritt zu verhindern, ist die Wiedereinschaltschutztemperatur [TK zul] werkseitig voreingestellt. Die Solar R4-Regelung schaltet die Solar Betriebspumpe PS erst ein, wenn die Kollektortemperatur den eingestellten Parameterwert einmal um 2 Kelvin unterschritten hat. Die Anlage läuft somit ohne Verdampfung im Kollektor an. An einem wolkenlosen Tag kann dies allerdings dazu führen, dass die Anlage erst am Spätnachmittag wieder einschaltet, obwohl die Speichertemperatur eine weitere Aufheizung erlaubt.

Um den Energieeintrag zu maximieren, [TK zul] auf einen Wert größer 100 °C einstellen und damit die Wiedereinschaltschutzfunktion deaktivieren. Für diesen Fall ist der Anlagenbetreiber über deutliche hörbare Siedegeräusche und Dampfschläge beim Befüllen zu informieren.

6.4.2 Weitere Einstellungen an Ihrer Solaranlage

Die folgenden Einstellhinweise gelten nur für die Grundeinstellung mit eingebautem FlowGuard:

- Handbetrieb aktivieren.
- Nach vollständiger Systembefüllung, den Wasserdurchfluss so einstellen, dass jeder Kollektor mit 90 bis 120 l/h durchströmt wird. Die Durchflussmenge entweder durch die Einstellung der Drehzahlstufe an der Solar Betriebspumpe PS oder/und durch die Einstellung des FlowGuards (Einregulierventil mit Durchflussanzeige) beeinflussen. Richtwerte für die korrekte Ventil-/Pumpenstufeneinstellung sind in Tab. 6-6 aufgeführt.
- Nach Abschluss der Einstellung, die Solar R4-Regelung ausschalten.

Anzahl Kollektoren	Soll-Durchfluss in I/min	Soll-Durchfluss in I/h
2	3,0 bis 4,0	180 bis 240
3	4,5 bis 6,0	270 bis 360
4	6,0 bis 8,0	360 bis 480
5	7,5 bis 10,0	450 bis 600

Tab. 6-6 Einstellung des Durchflusses am FlowGuard (FLG)

Für ein schnelles und sicheres Befüllen des Systems die Solar Betriebspumpe PS grundsätzlich auf eine hohe Drehzahlstufe einstellen, wenn die Anlagenhöhe H als Höhenunterschied zwischen Aufstellfläche des Solarspeichers und der Kollektoroberkante 10 m nicht überschreitet und sich ein noch ausreichender Durchfluss einstellt.

Auch bei korrekter Einstellung der Durchflussmenge, der Einschalt-Temperaturdifferenz [Delta T ein] sowie den besten Wetterbedingungen schaltet die Solaranlage gelegentlich ab. Bei steigender bzw. sinkender Sonne und zunehmender Speichertemperatur nimmt die Kollektortemperatur nach dem Einschalten der Pumpen langsam ab, die Abschaltbedingung wird erreicht. Aufgrund der anhaltenden Sonnenstrahlung steigt die Kollektortemperatur wieder, die Pumpen arbeiten und die Anlage taktet, weil die Solareinstrahlung für einen Dauerbetrieb nicht mehr ausreicht. Der FlowSensor verringert diesen Effekt durch Pumpendrehzahlregeluna.

6.4.3 Einstellungsempfehlung für die Nachheizung über externe Wärmequellen oder den Elektroheizstab, Brennersperrkontakt

Für das größte Leistungspotenzial:

- Solarspeicher selten und dann nur bis zur gerade noch ausreichenden Temperatur über die externe Wärmequelle oder den Elektroheizstab aufheizen.
- Nachladezeiten über Zeitprogramme einschränken:
 - a) Optimierte Zeiten für die "normale Nutzung" durch regelmäßige Verbrauchsgewohnheiten ermitteln.
 - b) Nachladung je nach angeschlossener Wärmequelle 1/2 bis 2 Stunden vor der gewohnten Nutzungszeit freigeben.
- Nachladezeit so begrenzen, dass der Speicher nach einem normalen Nutzungszyklus nicht mehr direkt aufgeheizt wird.

Die optimale Ladetemperatur ist von den persönlichen Bedürfnissen abhängig, oft reichen 50 °C Speichertemperatur. Ein Duschbad verbraucht durchschnittlich ca. 30 bis 50 I Warmwasser mit einer Zapftemperatur von 40 °C. Das während des Duschens in den Speicher nachflie-

ßende Kaltwasser muss im Solarspeicher im Durchlauferhitzerprinzip erwärmt werden.

• Bei größeren Warmwassermengen und zur Komfortgewährleistung auch bei außergewöhnlichen Nutzungszeiten die Temperatur in der Warmwasserzone ausreichend hoch einstellen oder den Wärmeerzeuger für die Nachladung freigeben, z. B. durch Umschalten auf ein anderes Zeitprogramm.

Einstellung der Speicherladetemperatur

 Die Warmwasser-Solltemperatur so einstellen, dass bei möglichst niedrigem Einstellwert genügend Warmwasser für die Entnahme (z. B. für 1 Dusche) zur Verfügung steht. Diese Einstellung dient dazu, die maximale Aufheizung des Warmwassers durch die Solaranlage bei einer gewissen Entnahmemenge zu garantieren.

Beheizung über einen externen Wärmeerzeuger

Je nach Heizleistungsbedarf (abhängig von Gebäudedämmstandard, Außentemperatur und Raum-Solltemperaturen) und der installierten Kollektorfläche ist es sinnvoll, die Beheizung über einen externen Wärmeerzeuger durch Anschluss des Brennersperrkontakts zu unterbinden. Dazu, auch wenn die Heizungsregelung eine Wärmeanforderung generiert:

- die Betriebsparameter [P min], [TS min] und [Zeit VBSK] so einstellen (siehe Abschnitt 6.3.10), dass der externe Wärmeerzeuger nicht heizt,
 - wenn über die Kollektoren eine Mindestheizleistung eingetragen wird, oder
 - der Speicher eine ausreichend hohe Temperatur erreicht hat.

6.4.4 Tipps für optimiertes Nutzungsverhalten

Warmwasser-Komfortempfinden und Nutzergewohnheiten sind individuell. Je höher die Soll-Speichertemperatur und je länger die Freigabezeiten für die nichtsolare Nachladung eingestellt werden, desto mehr wird das Speicherpotenzial für solare Wärmegewinne eingeschränkt. Bewusstes, an die besonderen Stärken der Solarspeicher angepasstes Verbrauchsverhalten minimiert den Energieverbrauch für nichtsolare Ladevorgänge.

- Moderne und komfortable Brauseköpfe mit Zapfraten von 5 bis 7 l/min nutzen.
 - ➔ Die geringere Zapfrate (Warmwasser-Entnahmemenge pro Minute) bewirkt eine geringere notwendige Nachladeleistung und damit eine größere Warmwassermenge mit hoher Temperatur.
- Zapfzeiten verkürzen.
 - → Geringer Energieverbrauch.
- Beim Befüllen der Badewanne zunächst nur heißes Wasser einfüllen.
 - ➔ Nachdem die im Solarspeicher gespeicherte Trinkwassermenge gezapft ist, sinkt die Warmwasser-Austrittstemperatur leicht und das Wasser wird in der Wanne gemischt. Auf diese Weise wird mit einer minimalen Ladetemperatur die Speicherkapazität maximal genutzt, genügend Warmwasser steht zur Verfügung.

6.4.5 Trinkwasserhygiene

Wird mehrere Tage kein Warmwasser entnommen und erreicht die Speichertemperatur durch die Solaranlage nicht mindestens 60 °C, wird aus hygienischer Sicht (Legionellenschutz) eine einmalige Aufheizung über 60 °C oder das Ablassen des gespeicherten Warmwassers (25 I) empfohlen.

7 Fehler und Störungen

7 Fehler und Störungen

7.1 Ereignisanzeige

Ereignis- Code	Klartext- anzeige	Beschreibung	Statusan- zeige (blinkt)	Leuchte (blinkt)	Folge
0	Kollektor	Kollektorfühler: Kurzschluss oder Unterbrechung	к	ТК	
1	Rücklauf	Rücklauffühler: Kurzschluss oder Unterbrechung	R	TR	Dauerhafte Abschaltung von P _S
2	Speicher	Speicherfühler: Kurzschluss oder Unterbrechung	S	TS	
3	Durchfluss	FlowSensor: Kurzschluss oder Unter- brechung	D		Datrick abox FlowConcer
4	Vorlauf	FlowSensor: Kurzschluss oder Unter- brechung	V		Betried onne FlowSensor
5	A/D	Interner A/D-Wandler-Fehler	G		
6	Versor- gung	Interner Gerätefehler der Versor- gungsspannung	G		Dauerhafte Abschaltung von P _S
7	Referenz	Interner Gerätefehler der Referenz- spannung	G		
8	RESET	Gesamt-Reset wurde durchgeführt			Parameter auf Werkswerte, Rechenwerte und Ereigniseinträge gelöscht (siehe Kapitel 6.2.10), Geräteneustart
		Minimaldurchfluss V1 (siehe Tab. 6-1) wurde in der Startphase	W		Abschaltung von P _S für 2 h, danach wieder betriebsbereit oder Status "F"
12	Startfluss	nach Ablauf der [Zeit P2] nicht erreicht (Beschreibung siehe Kapitel 6.2.1 und 6.2.12)	F	TV	Dauerhafte Abschaltung von P _S , wenn Ereig- nis 3x in Folge ohne zwischenzeitlichen erfolgreichen Start auftritt.
13	TS > Tsmax	Speicher-Maximaltemperatur ([TS max]) überschritten (Beschrei- bung siehe Kapitel 6.2.1 und 7.2)		TS	
14	TR >> TS	$T_R - T_S > 10$ K und TR > 40 °C (Beschreibung siehe Kapitel 7.2)		TR	Vorübergehende Abschaltung von P _S
15	TK > TK zul	Zulässige Kollektormaximaltempera- tur ([TK zul]) überschritten - (Beschreibung siehe Kapitel 6.2.1 und 7.2)		тк	
16	Abriss	Strömungsabriss während Betriebs- phase erkannt (V < V2, siehe Kapitel 6.2.9 und Tab. 6-1)			Vorübergehende Abschaltung von P_S (mindestens für Stabilisierungszeit), Sperrung der aktuellen sowie der darunterliegenden Pumpenmodulationsstufe, Neubefüllung durch P_S für [Zeit P2] bei nächster Einschaltbedingung.
202	P-on Reset	Einschalten			Neustart, alle Parametereinstellungen und Info-Parameter bleiben erhalten, automa- tisch gesperrte Pumpenleistungsstufen wer- den wieder freigegeben.
204	Brown-Out	Reset aufgrund unzulässiger Absen- kung der Netzspannung			Neustart entsprechend Code 202.
205	Watchdog	Reset aufgrund externer Störein- flüsse (z. B. Überspannungen durch Gewitter)			Neustart entsprechend Code 202.

Tab. 7-1 Ereignisspeicher

Über den Menüpfad: [Auswahl 2/2] -> [System] -> [Ereignisspeicher] und nach Eingabe des Fachmann-Passworts (siehe Abschnitt 6.3.4 und Bild 6-7) lassen sich während des Betriebes auftretende Ereignisse anzeigen. Dazu besitzt die Solar R4-Regelung ein einfaches Fehlerdiagnosesystem. Im Ereignisspeicher sind Art und Zeitpunkt des Ereignisses hinterlegt. Das Ereignis wird mit Klartext und Code ausgegeben, die Zeit seit Er-

eigniseintritt wird in Stunden angezeigt. Die einzelnen Ereignisse können, beginnend mit dem Aktuellsten, über die Info-Taste durchblättert werden. Steht der Parameter [löschen] im Menüpfad: [Auswahl 2/2] -> [System] -> [Ereignisspeicher] auf [ja], werden alle Ereignisse gelöscht. Das Löschen einzelner Ereignisse ist nicht möglich. Eine Übersicht über mögliche Einträge im Ereignisspeicher befindet sich in Tab. 7-1.

Fühlerspezifische Fehlermeldungen

Auf Kabelbruch sowie bei Kurzschluss in Fühlern oder Fühlerkabeln reagiert die Solar R4-Regelung wie folgt (siehe Tab. 7-2):

- Im Display zeigt ein blinkender Kennbuchstabe die Störung in
- der Statusspalte an und es erscheint eine Meldung.
- Die zum Fühler gehörende Leuchte blinkt.
- Zusätzlich greift die Regelung automatisch in den Betrieb der Anlage ein.

Alle übrigen Sensorwerte sind über die Pfeiltasten weiterhin erreichbar.

Fühler	Fehlerursache	Status (blinkt)	Display	Leuchte (blinkt)	Folge
Kollektortemp	Unterbrechung	К	uuuu	Τ _K	
Rollektortemp.	Kurzschluss			Τ _K	
Rücklauftemn	Unterbrechung	R	uuuu	T _R	Dauerhafte Abschaltung
	Kurzschluss			T _R	von P _S
Spoichartomp	Unterbrechung	S	uuuu	T _S	
Speichertemp.	Kurzschluss			T _S	
Vorlauftemp.	Spannungsabfall	V		ohne Leuchte	Retrich chao ElowSonsor
Durchflusssensor	Spannungsabfall	D		ohne Leuchte	

Tab. 7-2 Sensor-Fehlertabelle

7.2 Störungsbehebung

Störungsähnliche Betriebsereignisse

Speichertemperatur "T_S" im Solarspeicher erreicht den im Parameter [TS max] eingestellten Wert:

 Pumpen werden abgeschaltet, das System läuft leer. In der Solar R4-Regelung blinkt die T_S-Leuchte, das Display zeigt die gemessene Speichertemperatur. Sinkt die Speichertemperatur um mehr als 2 K, wird der normale Anlagenbetrieb automatisch wieder freigegeben.

Dabei kann es kurzfristig zur Verdampfung in den Kollektoren kommen. Der Dampf entweicht drucklos in den Speicher. Selten treten kurzzeitig auch geringe Mengen Wasserdampf aus dem Solarspeicher.

Temperatur im Kollektor ist höher als die Wiedereinschaltschutztemperatur [TK zul]:

 Pumpen werden abgeschaltet. In der Solar R4-Regelung blinkt die T_K-Leuchte. Sinkt die eingestellte Wiedereinschaltschutztemperatur um mehr als 2 K, wird der normale Anlagenbetrieb automatisch wieder freigegeben.

Störungen

WARNUNG!

Strom führende Teile können bei Berührung zu einem Stromschlag führen und lebensgefährliche Verletzungen sowie Verbrennungen verursachen.

- Um Gefährdungen durch beschädigte elektrische Leitungen zu vermeiden, diese immer durch elektrotechnisch qualifiziertes Fachpersonal unter Beachtung der gültigen elektrotechnischen Richtlinien sowie der Vorschriften des zuständigen Elektrizitätsversorgungsunternehmens erneuern.
- Schadensbehebung an Strom führenden Bauteilen der Regelungs- und Pumpeneinheit EKSRPS4A nur durch vom Energieversorgungsunternehmen autorisierte und anerkannte Heizungsfachkräfte.
- Vor Beginn der Instandsetzungsarbeiten die Regelungs- und Pumpeneinheit EKSRPS4A von der Stromversorgung trennen (Sicherung, Hauptschalter ausschalten) und gegen unbeabsichtigtes Wiedereinschalten sichern.
- Die entsprechenden Arbeitssicherheitsvorschriften einhalten.

Verbrennungsgefahr durch heiße Oberflächen.

- Vor den Wartungs- und Inspektionsarbeiten, Gerät ausreichend lange abkühlen lassen.
- Schutzhandschuhe tragen.

In der Solar R4-Regelung blinkt die T_R-Leuchte.

Rücklauftemperatur "T_R" ist größer 40 °C und liegt um 10 K über der Speichertemperatur "T_S". Die Solar Betriebspumpe P_S wird abgeschaltet. Ursache ist ein defekter oder falsch angeschlossener Fühler.

• Fühler korrekt montieren oder austauschen, der normale Anlagenbetrieb wird automatisch wieder freigegeben.

In der Statusspalte der Solar R4-Regelung blinkt "W".

Der Minimaldurchfluss Startphase "V1" am FlowSensor (siehe Seite 21, Tab. 6-1) ist nach dem Einschalten der Solar Betriebspumpe P_S und Ablauf der über den Parameter [Zeit P2] definierten Zeit nicht erreicht (Bild 6-3).

- ➔ Die Anlage geht in eine vorübergehende Sperrung für 2 h (Solar Betriebspumpe P_S wird abgeschaltet), versucht jedoch nach der Sperrzeit automatisch erneut zu starten.
- ➔ Wenn dieses Ereignis dreimal in Folge auftritt ohne zwischenzeitlichen erfolgreichen Start, wird die Solar Betriebspumpe P_S dauerhaft abgeschaltet und der Status "F" gesetzt.

In der Statusspalte der Solar R4-Regelung blinkt "F".

Der Minimaldurchfluss Startphase "V1" am FlowSensor (siehe Seite 21, Tab. 6-1) ist nach dem Einschalten der Solar Betriebspumpe P_S und Ablauf der über den Parameter [Zeit P2] definierten Zeit nicht erreicht (Bild 6-3). Die Solar Betriebspumpe P_S wird abgeschaltet.

 Bei Verdacht auf Leck, die Solaranlage untersuchen, Schaden beheben und anschließend über "AUS/EIN-Schalten" des Reglers die Sperre aufheben.

Lässt sich die Anlage nicht befüllen (**Status "F"**), obwohl die Solar Betriebspumpe P_S von der Regelung angesteuert werden, können folgende Fehler die Ursache sein:

- 1. Luft, die beim Leerlaufen des Systems mit heruntergeführt wurde, ist in der Solar Betriebspumpe P_S.
 - Solar Betriebspumpe P_S auf Luft pr
 üfen. Der Automatikentl
 üfter muss immer in Betrieb sein! Verschlusskappe pr
 üfen und gegebenenfalls l
 ösen (nicht entfernen).
- 2. Anlage auf Dichtheit prüfen.
 - Anlage auf Dichtheit prüfen und ggf. abdichten. Dabei Hinweise in Kapitel 5 "Inbetriebnahme und Außerbetriebnahme" beachten.
- 3. Die Startlaufzeit [Zeit P2] (Kap. 6.4) erhöhen.
- 4. Anlage auf Verstopfung prüfen. Bei Frost können sich Eispfropfen in fehlerhaft verlegter Verbindungsleitung bilden.
- 5. Ventilposition am Speicheranschlusswinkel prüfen.

Ist das **Display ohne Anzeige** und der Hauptschalter ist in der beleuchteten "EIN-Stellung":

Regelung austauschen (elektronischer Fehler).

Ist der Hauptschalter in "EIN-Stellung" nicht beleuchtet, ist das Gerät ohne Stromversorgung.

• Prüfen Sie die Steckverbindung des Netzsteckers und den Netzanschluss (Sicherung, Schalter).

Tritt bei Sonneneinstrahlung dauerhaft Dampf aus dem

Solarspeicher aus, ist der Durchfluss zu gering.In diesem Fall die Systemeinstellungen prüfen.

Spezielle Hinweise für elektrische Fühler

Es dürfen nur original Daikin Ersatzteile verwendet werden.

- Anzeige im Display der Solar R4-Regelung auswerten.
- Gehäuse der Solar R4-Regelung aushängen und betreffenden F
 ühler abziehen und ggf. abklemmen.

Ist der Fehler behoben, geht die Anlage automatisch in den Normalbetrieb und befindet sich im Betriebsmodus.

Die Widerstands- oder Gleichspannungswerte der Fühler sind in Bild 9-1 und in Bild 9-2 aufgeführt. Diagnostizierbare interne Fehler der Regelungselektronik werden im Display entsprechend Tab. 7-1 angezeigt (**Status "G"**). Sie bewirken ebenfalls eine Sicherheits-Pumpenabschaltung. Ein "AUS-Schalten" und "Wieder-EIN-Schalten" nach einer Wartezeit von 2 min behebt entweder den Fehler oder die Regelung muss ausgetauscht werden.

Hydraulische Systemeinbindung 8

8.1 Schemata

WARNUNG!

Im Solarspeicher können Temperaturen über 60 °C auftreten.

- Verbrühschutz einbauen.
 - Verbrühschutz VTA32
 - Verschraubungs-Set 1"

Optional können die Daikin-Geräte mit Zirkulationsbremsen aus Kunststoff ausgerüstet werden. Diese sind für Betriebstemperaturen von maximal 95 °C geeignet. Soll ein Wärmetauscher mit mehr als 95 °C betrieben werden, ist bauseits eine andere Zirkulationsbremsen zu installieren.

Nachfolgend ist eine Auswahl der am häufigsten installierten Anlagenschemata zusammengestellt. Die gezeigten Anlagenschemata sind beispielhaft und ersetzen keinesfalls die sorgfältige Anlagenplanung.

Standard-Solar-Einbindung mit Luft-Wasser-Wärmepumpe Altherma EHS(X/H)¹⁾ Bild 8-1

Bild 8-2 Standard-Solar-Einbindung mit Luft-Wasser-Wärmepumpe (Altherma EHBX) ¹⁾

 Die gezeigten Anlagenschemata erheben keinen Anspruch auf Vollständigkeit und ersetzen nicht die sorgfältige Anlagenplanung.

8 Hydraulische Systemeinbindung

Kurz-Bez.	Bedeutung
1	Kaltwasserverteilnetz
2	Warmwasserverteilnetz
3	Heizung Vorlauf
4	Heizung Rücklauf
5	Mischerkreis
6	Zirkulation
7	Rückschlagklappe, Rückflussverhinderer
7a	Zirkulationsbremsen
8	Solarkreis
9	Gasleitung (Kältemittel)
10	Flüssigkeitsleitung (Kältemittel)
11	Speichervorlauf
12	Speicherrücklauf
3UV1	3-Wege-Umschaltventil (DHW)
3UV2	3-Wege-Umschaltventil (Kühlen)
3UVB1	3-Wege-Umschaltventil (Heizung, interner Kreis geregelt)
3UV DHW	3-Wege-Umschaltventil (DHW + Heizungsunter- stützung geregelt)
ВОуу	Elektroheizstab (Booster-Heater)
BUxx	Elektroheizstab (Backup-Heater)
BV	Überströmventil
С	Kältemittelverdichter
CW	Kaltwasser
DHW	Warmwasser
E	Expansionsventil
EHS(X/H)	Daikin Altherma (Solarspeicher mit integriertem Wärmepumpengerät)
EHS157068	Regelung Mischerkreis
EKHB	Inneneinheit Altherma Bi-Bloc Wärmepumpe
EKHWP	Daikin Energiespeicher
EKSRPS4A	Solar Regelungs- und Pumpeneinheit P=0
ERHQ	Außeneinheit Altherma Bi-Bloc Wärmepumpe
ERLQ	Außeneinheit Altherma EHS(X/H)
FLG	FlowGuard Regulierventil mit Durchflussanzeige
FLS	Durchflusssensor, FlowSensor FLS 20 oder alternativer Typ gemäß Tab. 6.1 (Durchfluss- und Vorlauftemperaturmessung)
H _{1,} H ₂ H _m	Heizkreise
HP-TR	Hauptregler Wärmepumpe
MAG	Membranausdehnungsgefäß
MIX	3-Wege-Mischer mit Antriebsmotor
MK1	Mischergruppe mit Hocheffizienzpumpe
MK2	Mischergruppe mit Hocheffizienzpumpe (PWM- geregelt)
P _{Mi}	Mischerkreispumpe
P _S	Solar Betriebspumpe P=0
P _Z	Zirkulationspumpe
PWT	Plattenwärmetauscher (Kondensator)
RLB	Rücklauftemperaturbegrenzer
RoCon HP	Regelung Altherma EHS(X/H)
RT	Raumthermostat
SAS1	Schlamm- und Magnetabscheider

Kurz-Bez.	Bedeutung
SK	Solar Kollektorfeld
SV	Sicherheitsüberdruckventil
t _{AU}	Außentemperaturfühler RoCon OT1
t _{DHW}	Speichertemperaturfühler (im Lieferumfang enthalten)
t _{Mi}	Vorlauftemperaturfühler Mischerkreis
Τ _K	Solar Kollektortemperaturfühler
T _R	Solar Rücklauftemperaturfühler
T _S	Solar Speichertemperaturfühler
T _V	Solar Vorlauftemperaturfühler
V	Ventilator (Verdampfer)
VS	Verbrühschutz VTA32

Tab. 8-1 Kurzbezeichnungen in Hydraulikplänen

8.2 Anschluss einer Druck-Kollektoranlage

Lässt es die bauliche Gegebenheit nicht zu, die Kollektoren oberhalb des Speicherbehälters zu montieren oder kann die Verbindungsleitung nicht mit durchgehendem Gefälle zwischen Kollektorfeld und Speicherbehälter verlegt werden, kann das drucklose Daikin Solarsystem (DrainBack) und damit die Regelungs- und Pumpeneinheit EKSRPS4A nicht eingesetzt werden.

Stattdessen kann die Heizungsanlage mit dem Daikin Solar-Drucksystem ausgeführt werden. Folgende Solar-Komponenten sind in beiden Systemen gleichermaßen einsetzbar:

- Solar Hochleistungs-Flachkollektoren EKSV21P, EKSV26P, EKSH26P
- Solar Aufdach-, Flachdach- und Indachmontagepakete
- Solar Warmwasserspeicher

Andere Systemkomponenten dürfen nur systemspezifisch verwendet werden.

9 Technische Daten

9 Technische Daten

9.1 Product Fiche

Energy labelling Regulation: (EU) 811/2013

Ecodesign Regulation: (EU) 813/2013

Solar devices pumps + controls	/ Model names		EKSRPS4A		
Auxilian	Solpump	[W]	32,5		
	Solstandby	[W]	2		
Annual auxiliary electricity consumption Qaux		[kWh/a]	92		

Details and precautions on installation, maintenance and assembly can be found in the installation and or operation manuals. Energy labels and product fiches for addition combinations, packages and other products can be found on www.rotex-heating.com.

Sound power in heating mode, measured according to the EN12102 under conditions of the EN14825.

This data is for comparison of Energy efficiencies according to Energy label directive 2010/30/EC, for correct selection of products for your application, contact your dealer. Depending on your application and the product selected an additional supplementary heater may have to be installed.

Tab. 9-1 Kenndaten zur Ermittlung der Werte zur Energieeffizienzkennzeichnung

9.2 Regelungs- und Pumpeneinheit EKSRPS4A

	Regelungs- und Pumpeneinheit EKSRPS4A						
Abmessungen B x H x T		230 x 815 x142 mm					
Betriebsspannung		230 V/50 Hz					
Solar Betriebspumpe		Grundfos UPM3 15-145					
Max. elektrische Leistungsaufnahme	Beim Start:	65 W	(115 W)*				
EKSRPS4A	Im Normalbetrieb:	15-65 W (modulierend)	(30-115 W)*				
Solar R4-Regelung	Digitaler Differenztemperaturregler mit Klartextanzeige						
Max. elektrische Leistungsaufnahme der Rege-	2 W						
Kollektortemperaturfühler	Pt 1000						
Speicher- und Rücklauf-Temperaturfühler	PTC						
Vorlauftemperatur- und Durchflusssensor	FLS 20 (alternativ FLS 12, FLS 100)						

* Die Angaben in Klammern gelten, wenn eine zweite Pumpe installiert wurde.

Tab. 9-2Technische Daten Regelungs- und Pumpeneinheit

9.3 Fühlerkenndaten

Temperaturfü	hler															
Solar-Fühler	Sensortyp	Messt	esstemperatur in °C													
	•	-20) -10 0 10 20 30 40 50 60 70 80 90 100 110 7								120					
		Senso	orwider	stand i	n Ohm	nach I	lorm b	zw. He	rstelle	rangab	en					
TR, TS	PTC	1386	1495	1630	1772	1922	2080	2245	2418	2598	2786	2982	3185	3396		
ТК	Pt 1000	922	961	1000	1039	1077	1116	1155	1194	1232	1270	1308	1347	1385	1423	1461
FlowSensor		Senso	or-Ausg	angss	pannur	ig in V										
TV	(0,5, - 3,5 V)			0,5	0,80	1,10	1,40	1,70	2,00	2,30	2,60	2,90	3,20	3,50		
Durchflussme	Durchflussmenge															
		Messo	Messdurchfluss in I/min													
FlowSensor		0,0	2,0	4,0	6,0	8,0	10,0	12,0	14,0	16,0	18,0	20,0				
		Sensor-Ausgangsspannung in V														
V	(0,36, - 3,5 V)	0,36	0,67	0,99	1,30	1,62	1,93	2,24	2,56	2,87	3,19	3,50				

Tab. 9-3 Fühlertabelle der Solar-Fühler

R_S Sensorwiderstand (PTC, t Temperatur Pt 1000)

Bild 9-1 Widerstandskennlinien der Solar-Fühler

U Sensor-Ausgangsspannung

Bild 9-2 Kennlinien des FlowSensors

9.4 Pumpenkennlinie

Bild 9-3 Pumpenkennlinie

10 Notizen	
10 Notizen	
·	

40

	10	Notizen

<u> </u>	

11 Stichwortverzeichnis

Α

Anlagenkonzepte9
Aufbau
Außerbetriebnahme17
В
Befüllzeit 16, 19
Betriebsanzeige 22, 23, 25, 27, 28
Betriebsweise
Booster-Temperatur 20, 22, 29

Brennersperrkontakt 28, 31

D

Drehzahlregelung Automatisch Manuell	22 19 28 37
	57
Durchnuss	
Einstellung 11,	12
Menge 21, 30,	34
Messung 7, 11, 12, 16, 21,	25

Ε

Einbauposition Kollektortemperatur-
fühler
Einstellmenü 22, 26
Schnelleinstieg
Elektroheizstab
Entsorgung18
Ereignisspeicher 22, 27, 32

F

Fachmann-Reset
Fehlercodes
FlowGuard 11, 37
FlowSensor 7, 23, 29, 37, 38
Frostgefahr
Frostschutzfunktion 20, 23

G ~

0	
Geräuschprobleme	28
Gesamt-Wärmeertrag 22, 24	1, 27
н	
Handbetrieb	21

Hydraulische Schemen	. 35
Info-Parameter22, 24, 25	, 27

Κ Kurzbeschreibung8

Μ

Momentanleistung	24
Montage	
FlowGuard	11
FlowSensor	11
Pumpeneinheit	10
Regelung	13
Temperaturfühler	12

Ρ

Parameter	
Beheizung über externe	
Wärmeerzeuger	
Empfohlene Einstellbereiche29	
Nachheizung über externe	
Wärmequellen	
Übersicht	
Passworteingabe	
Produktbeschreibung7	
Pumpenleistungsstufen22	
Pumpenmindestleistung22	
Pumpenmodulation 11, 16, 22, 28, 30)

R

Regelung
Handbetrieb21
Kurzbeschreibung8
Passworteingabe27
Sprachwahl
Regelungs- und Pumpeneinheit8
Bestandteile8
Montage10
Reset

S

Selbsttest 22, 24
Sensor-Fehlertabelle
Sollspreizung 22, 24
Speichertemperaturfühler12
Sperrzeit
Spitzenleistung24
Sprachwahl
Startanzeige
Statusanzeige 25, 32
Statusspalte 33, 34
Stilllegung17
Endgültig18
Vorübergehend17
Störungen
Behebung
Ereignisanzeige

Т

Technische Daten	
Kennlinien FlowSensor	.39
Regelungs- und Pumpeneinheit .	.38
Temperaturfühler 38,	39
V	

Verschärfte Frostschutzfunktion23

W

Wärmeertrag
Gesamt
Momentanleistung24
Tag
Warmwasserspeicher
Technische Daten
Verwendbare Modelle8
Wiedereinschaltschutztemperatur

Zandvoordestraat 300, B-8400 Oostende, Belgium

008.1627549_00

02/2016